We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Efficient internalization and intracellular translocation of inhaled gold nanoparticles in rat alveolar macrophages

    Shinji Takenaka

    * Author for correspondence

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.

    ,
    Winfried Möller

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Manuela Semmler-Behnke

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Erwin Karg

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Alexander Wenk

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Otmar Schmid

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Tobias Stoeger

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Luise Jennen

    Institute of Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Michaela Aichler

    Institute of Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Axel Walch

    Institute of Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    ,
    Suman Pokhrel

    Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Badgasteiner Str. 3, 28359 Bremen, Germany

    ,
    Lutz Mädler

    Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Badgasteiner Str. 3, 28359 Bremen, Germany

    ,
    Oliver Eickelberg

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    &
    Wolfgang G Kreyling

    Comprehensive Pneumology Center (CPC) – Institute of Lung Biology & Disease (iLBD), Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany

    Focus Network Nanoparticles & Health, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg/Munich, Germany

    Published Online:https://doi.org/10.2217/nnm.11.152

    Aim: To investigate the relationship of alveolar macrophages and inhaled nanoparticles (NPs) in the lung. Materials & methods: Rats were exposed by inhalation to 16-nm gold NPs for 6 h, and ultramicroscopic observation on the frequency and localization of gold NPs within lavaged macrophages was performed for 7 days. Results & discussion: The majority of macrophages examined on day 0 (94%) contained internalized gold NPs, and the percentage decreased to 59% on day 7. Gold NPs were exclusively found within cytoplasmic vesicles. On day 0, most gold NPs appeared to be individual or slightly agglomerated, while they were frequently agglomerated on day 7. Conclusion: Alveolar macrophages efficiently internalized NPs by endocytosis, and rearrangements of vesicles and of NPs in the vesicles of macrophages occurred.

    Original submitted 25 March 2011; Revised submitted 28 July 2011; Published online 4 April 2012

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect.113,823–839 (2005).▪▪ Review of the nanotoxicological disciplines.
    • Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J. Cell Biol.96(1),1–27 (1983).▪ One paper from the many in vitro studies of this group on the intracellular dynamics of nanoparticles.
    • Lai SK, Hida K, Man ST et al. Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials28(18),2876–2884 (2007).
    • Loubery S, Wilhelm C, Hurbain I, Neveu S, Louvard D, Coudrier E. Different microtubule motors move early and late endocytic compartments. Traffic9(4),492–509 (2008).
    • Luhmann T, Rimann M, Bittermann AG, Hall H. Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles. Bioconjug. Chem.19(9),1907–1916 (2008).
    • Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Koller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater.7(1),347–354 (2011).
    • Tkachenko AG, Xie H, Liu Y et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug. Chem.15(3),482–490 (2004).
    • Nabiev I, Mitchell S, Davies A et al. Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett.7(11),3452–3461 (2007).
    • Berry CC, de la Fuente JM, Mullin M, Chu SW, Curtis AS. Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Trans. Nanobiosci.6(4),262–269 (2007).
    • 10  Berry CC. Intracellular delivery of nanoparticles via the HIV-1 tat peptide. Nanomedicine (Lond).3(3),357–365 (2008).
    • 11  Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano2(8),1639–1644 (2008).
    • 12  Lowe AR, Siegel JJ, Kalab P, Siu M, Weis K, Liphardt JT. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature467(7315),600–603 (2010).
    • 13  Lauweryns JM, Baert JH. The role of the pulmonary lymphatics in the defenses of the distal lung: morphological and experimental studies of the transport mechanisms of intratracheally instillated particles. Ann. NY Acad. Sci.221,244–275 (1974).▪▪ An in vivo morphological study on the localization of nanoparticles after instillation.
    • 14  Oberdörster G. Lung clearance of inhaled insoluble and soluble particles. J. Aerosol. Med.1(4),289–330 (1988).
    • 15  Roth C, Ferron GA, Karg E et al. Generation of ultrafine particles by spark discharging. Aerosol. Sci. Technol.38(3),228–235 (2004).
    • 16  Kreyling WG, Semmler M, Erbe F et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A.65(20),1513–1530 (2002).
    • 17  Takenaka S, Karg E, Kreyling WG et al. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal. Toxicol.18(10),733–740 (2006).
    • 18  Takenaka S, Karg E, Roth C et al. Pulmonary and systemic distribution of inhaled ultrafine silver in rats. Environ. Health Perspect.109(Suppl. 4),547–551 (2001).
    • 19  Lehnert BE, Valdez YE, Tietjen GL. Alveolar macrophage-particle relationships during lung clearance. Am. J. Respir. Cell Mol. Biol.1(2),145–154 (1989).
    • 20  Lucocq JM, Habermann A, Watt S, Backer JM, Mayhew TM, Griffiths G. A rapid method for assessing the distribution of gold labeling on thin sections. J. Histochem. Cytochem.52(8),991–1000 (2004).
    • 21  Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc.60,309–319 (1938).
    • 22  Kodavanti UP, Schladweiler MC, Ledbetter AD et al. Pulmonary and systemic effects of zinc-containing emission particles in three rat strains: multiple exposure scenarios. Toxicol. Sci.70(1),73–85 (2002).
    • 23  Mayhew TM, Lucocq JM, Griffiths G. Relative labelling index a novel stereological approach to test for non-random immunogold labelling of organelles and membranes on transmission electron microscopy thin sections. J. Microsc.205,153–164 (2002).
    • 24  Weibel ER. Stereological methods. Volume 1. Practical Methods for Biological Morphometry. Acadmic Press INC, London, UK (1979).
    • 25  Katzmann DJ. No ESCRT to the melanosome: MVB sorting without ubiquitin. Dev. Cell10(3),278–280 (2006).
    • 26  Falguieres T, Luyet PP, Gruenberg J. Molecular assemblies and membrane domains in multivesicular endosome dynamics. Exp. Cell Res.315(9),1567–1573 (2009).
    • 27  Perera RM, Zoncu R, Johns TG et al. Internalization, intracellular trafficking, and biodistribution of monoclonal antibody 806: a novel anti-epidermal growth factor receptor antibody. Neoplasia9(12),1099–1110 (2007).
    • 28  Oberdörster G, Gelein RM, Ferin J, Weiss B. Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal. Toxicol.7(1),111–124 (1995).
    • 29  Furuyama A, Kanno S, Kobayashi T, Hirano S. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch. Toxicol.83(5),429–437 (2009).
    • 30  Semmler-Behnke M, Takenaka S, Fertsch S et al. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ. Health Perspect.115(5),728–733 (2007).
    • 31  Mühlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P. Interactions of nanoparticles with pulmonary structures and cellular responses. Am. J. Physiol. Lung Cell Mol. Physiol.295(5),L817–L829 (2008).
    • 32  Silverstein SC, Steinman RM, Cohn ZA. Endocytosis. Ann. Rev. Biochem.46,669–722 (1977).
    • 33  Swanson JA. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol.9(8),639–649 (2008).
    • 34  Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett.6(4),662–668 (2006).
    • 35  Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA105(38),14265–14270 (2008).
    • 36  Lesniaka A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials31(36),9511–9518 (2011).
    • 37  Palecanda A, Paulauskis J, Al-Mutairi E et al. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J. Exp. Med.189(9),1497–1506 (1999).
    • 38  Kobzik L, Godleski JJ, Brain JD. Selective down-regulation of alveolar macrophage oxidative response to opsonin-independent phagocytosis. J. Immunol.144(11),4312–4319 (1990).
    • 39  Kanno S, Furuyama A, Hirano S. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol. Sci. (2007).
    • 40  Valberg PA, Brain JD, Kane D. Effects of colchicine or cytochalasin B on pulmonary macrophage endocytosis in vivo. J. Appl. Physiol.50(3),621–629 (1981).
    • 41  Van Meel E, Klumperman J. Imaging and imagination: understanding the endo-lysosomal system. Histochem. Cell Biol.129(3),253–266 (2008).
    • 42  Dougherty GM, Rose KA, Tok JBH et al. The zeta potential of surface-functionalized metallic nanorod particles in aqueous solution. Electrophoresis29(5),1131–1139 (2008).
    • 43  Farquhar MG. Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cationic ferritin. J. Cell Biol.77(3),R35–R42 (1978).
    • 44  Patil ML, Zhang M, Betigeri S, Taratula O, He H, Minko T. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug. Chem.19(7),1396–1403 (2008).