We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes

    ,
    Perine Landois

    Université de Toulouse, UPS, INP, Institut Carnot Cirimat, 118, route de Narbonne, F-31062 Toulouse cedex 9, France

    CNRS, Institut Carnot Cirimat, F-31062 Toulouse, France

    ,
    Pascal Puech

    Université de Toulouse, UPS, INSA, CEMES, 29, rue Jeanne Marvig, BP 94347, F-31055 Toulouse cedex, France

    ,
    Eric Pinelli

    Université de Toulouse, UPS, INP; EcoLab (Laboratoire d’écologie fonctionnelle), ENSAT, Avenue de l’Agrobiopôle, F-31326 Castanet-Tolosan, France

    CNRS, EcoLab (Laboratoire d’écologie fonctionnelle), F-31326 Castanet-Tolosan, France

    ,
    Emmanuel Flahaut

    Université de Toulouse, UPS, INP, Institut Carnot Cirimat, 118, route de Narbonne, F-31062 Toulouse cedex 9, France

    CNRS, Institut Carnot Cirimat, F-31062 Toulouse, France

    &
    Laury Gauthier

    Université de Toulouse, UPS, INP; EcoLab (Laboratoire d’écologie fonctionnelle), ENSAT, Avenue de l’Agrobiopôle, F-31326 Castanet-Tolosan, France

    CNRS, EcoLab (Laboratoire d’écologie fonctionnelle), F-31326 Castanet-Tolosan, France

    Published Online:https://doi.org/10.2217/nnm.10.60

    The potential impact of industrial multiwalled carbon nanotubes (MWNTs) was investigated under normalized laboratory conditions according to the International Standard micronucleus assay ISO 21427–1 for 12 days of half-static exposure to 0.1, 1, 10 and 50 mg/l of MWNTs in water. Three different end points were carried out for 12 days of exposure: mortality, growth inhibition and micronuclei induction in erythrocytes of the circulating blood of larvae. Raman spectroscopy analysis was used to study the presence of carbon nanotubes in the biological samples. Considering the high diversity of carbon nanotubes according to their different characteristics, MWNTs were analyzed in Xenopus larvae, comparatively to double-walled carbon nanotubes used in a previous study in similar conditions. Growth inhibition in larvae exposed to 50 mg/l of MWNTs was evidenced; however, no genetoxicity (micronucleus assay) was noticed, at any concentration. Carbon nanotube localization in the larvae leads to different possible hypothesis of mechanisms explaining toxicity in Xenopus.

    Bibliography

    • Monthioux M, Serp P, Flahaut E et al.: Introduction to Carbon Nanotubes Springer Handbook of Nanothechnology (2nd Edition). Bushan B (Ed.), Springer, NY, USA 43–112 (2007).
    • Fuji-Keizai USA, Inc., CNT Wordwide: Carbon Nanotubes – Wordwide Status and Outlook: Applications, Applied Industries, Production, R&D and Commercial Implications. 153 (2002).
    • Mouchet F, Landois P, Pinelli E, Flahaut E, Gauthier L: Carbon nanotubes in the environment and their potential ecotoxicity: Context and state of the art. Ecotoxicité des nanotubes de carbone dans l’environnement : contexte et état de l’art. Env. Risques & Santé8(1),47–55 (2009).
    • Mouchet F, Landois P, Flahaut E, Pinelli E, Gauthier L: Assessment of the potential in vivo ecotoxicity of double-walled carbon nanotubes (DWNT) in water, using the amphibian Ambystoma mexicanum. Nanotoxicology1(2),149–156 (2007).
    • Mouchet F, Landois P, Sarreméjean E et al.: Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aqua Tox.87,127–137 (2008).
    • Mouchet F, Landois P, Datsyuk V et al.: Use of the international amphibian micronucleus standardized procedure (ISO 21427–1) for in vivo evaluation of double-walled toxicity and genotoxicity in water. Environ. Toxicol. DOI: 10.1002/tox.20537 (2010) (Epub ahead of print).
    • Gauthier L: The amphibian micronucleus test, a model for in vivo monitoring of genotoxic aquatic pollution. Review Paper. Int. J. Batrachol.14(2),53–84 (1996).
    • Gauthier L, Tardy E, Mouchet F, Marty J: Biomonitoring of the genotoxic potential (micronucleus assay) and detoxifying activity (EROD induction) in the river Dadou (France), using the amphibian Xenopus laevis. Sci. Total Environ.323,47–61 (2004).
    • Bridges CM, Dwyer FJ, Hardesty DK, Whites DW: Comparative contaminant toxicity: are amphibian larvae more sensitive than fish? Bull. Env. Contam. Toxicol.69,562–569 (2002).
    • 10  Gauthier L, Van Der Gaag MA, L’Haridon J, Ferrier V, Fernandez M: In vivo detection of waste water and industrial effluent genotoxicity: use of the newt micronucleus test (Jalyet test). Sci. Total Environ.138,249–269 (1993).
    • 11  Vuillaume M: Reduced oxygen species, mutation, induction and cancer initiation. Mutat. Res.186(1),43–72 (1987).
    • 12  Ferrier V, Gauthier L, Zoll-Moreux C, L’Haridon J: Genotoxicity tests in amphibians – a review. Microscale Testing in Aquatic Toxicology: advances, techniques and practice35,507–519 (1998).
    • 13  Mouchet F, Gauthier L, Mailhes C, Ferrier V, Devaux A: Comparative study of the comet assay and the micronucleus test in amphibian larvae (Xenopus laevis) using benzo(a)pyrene, ethyl methanesulfonate, and methyl Methanesulfonate: establishment of a positive control in the amphibian comet assay. Environ. Toxicol.20(1),74–84 (2005).
    • 14  Mouchet F, Cren S, Cunienq C, Deydier E, Guilet R, Gauthier L: Assessment of lead ecotoxicity in water using the amphibian larvae (Xenopus laevis) and preliminary study of its immobilization in meat and bone meal combustion residues. Biometals20(2),113–127 (2007).
    • 15  Jaylet A, Gauthier L, Zoll C: Micronucleus test using peripheral red blood cells of amphibian larvae for detection of genotoxic agents in freshwater pollution. In: In Situ Evaluations of Biological Hazards of Environmental Pollutants. Sandhu SS et al. (Eds.). Plenum Press, NY, USA 71–80 (1990).
    • 16  Mouchet F, Gauthier L, Mailhes C, Ferrier V, Devaux A: Comparative evaluation of the genotoxicity of captan in amphibian larvae (Xenopus laevis and Pleurodeles waltl) using the comet assay and the micronucleus test. Environ. Toxicol.21(3),264–277 (2006).
    • 17  Mouchet F, Baudrimont M, Gonzalez P et al.: Genotoxic and stress inductive potentiel of cadmium in Xenopus laevis larvae. Aqua Tox.78(2),157–166 (2006).
    • 18  AFNOR Association française de normalisation (the French National Organization for quality regulations). Norme NFT 90–325. Qualité de l’Eau. Evaluation de la génotoxicité au moyen de larves d’amphibien (Xenopus laevis, Pleurodeles waltl). AFNOR, Paris, France 17 (2000).
    • 19  ISO, ISO International Standard: Water quality – evaluation of genotoxicity by measurement of the induction of micronuclei – part 1: Evaluation of Genotoxicity Using Amphibian Larvae. ISO 21427–1, ICS: 13.060.70, Genova, CH (2006).
    • 20  Nieuwkoop PD, Faber J: Normal Tables of Xenopus laevis (Daudin). North-Holland Publishers, Amsterdam (1956).
    • 21  McGill R, Tuckey J, Larsen W: Variations of box plots. Am. Statist.32,12–16 (1978).
    • 22  Flahaut E, Peigney A, Laurent C, Rousset A: Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes. J. Mater. Chem.10,249–252 (2000).
    • 23  Flahaut E, Agnoli F, Sloan J, O’Connor C, Green MLH: CCVD synthesis and characterization of cobalt-encapsulated nanoparticles. Chem. Mater.14,2553–2558 (2002).
    • 24  Peigney A, Laurent Ch, Flahaut E, Bacsa R, Rousset A: Geometrical calculations on the specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon39,507–514, (2000).
    • 25  Smith CJ, Shaw BJ, Handy RD: Toxicity of single walled carbon nanotubes on rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aqua Tox.82(2),94–109 (2007).
    • 26  Yang ST, Wang X, Jia G et al.: Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett.182–189 (2008).
    • 27  Muller J, Huaux F, Moreau N et al.: Respiratory toxicity of Multiwall carbon nanotubes. Toxicol. Applied Pharmacol.207,221–231 (2005).
    • 28  Roberts AP, Mount AS, Seda B et al.: In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ. Sci. Technol.41(8),3025–3029 (2007).
    • 29  Petersen EJ, Huang Q, Weber WJ: Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegates. Env. Health Perspect.116(4),496–500, (2008).
    • 30  Kennedy AJ, Hull MS, Steevens JA et al.: Factors influencing the partitioning and toxicity of nanaotubes in the aquatic environment. Environ. Toxicol. Chem.27(9),1932–1941 (2008).
    • 31  Garrett RH, Grisham CM, Lubochinsly B: Biochimie. Synthèse et dégradation des proteins. 1089–1126. Traduction de la seconde édition américaine par Bernard Lubochinsky. De Boeck Université. 33, 1292, (2000).
    • 32  Tabet L, Bussy C, Amara N et al.: Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health Part A72(2),60–73, (2009).
    • 33  Pulskamp K, Diabaté S, Krug H: Carbon nanotubes show no sign of actute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett.168(1),58–74 (2007).
    • 34  Fenoglio I, Greco G, Tomatis M et al.: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem. Res. Toxicol.1(9),1690–1697 (2008).
    • 35  Muller J, Huaux F, Fonseca A et al.: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects Chem. Res. Toxicol.21(9),1698–1705 (2008).
    • 36  Kolosnjaj J, Szwarc H, Moussa F: Toxicity studies of carbon nanotubes. Adv. Exp. Med. Biol.620,181–204 (2007).
    • 101  Madre JF: Logiciel Mesurim. Académie d’Amiens (2006) www.ac-amiens.fr/pedagogie/svt/info/logiciels/Mesurim2/Index.htm