We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood–brain barrier

    Sneha Avinash Kulkarni

    Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02–11, 4 Engineering Drive 4, 117576, Singapore

    Nanocores, National University of Singapore, Block EA, 04–27, 9 Engineering Drive 1, 117576, Singapore

    &
    Si-Shen Feng

    † Author for correspondence

    Division of Bioengineering, National University of Singapore, Block EA, 05–12, 9 Engineering Drive 1, 117576, Singapore.

    Published Online:https://doi.org/10.2217/nnm.10.131

    Aim: The aim of this work was to investigate the effect of surface modification of biodegradable nanoparticles on their cellular uptake, cytotoxicity and biodistribution for the delivery of imaging and therapeutic agents across the blood–brain barrier. Materials & methods: Coumarin-6- and docetaxel-encapsulated poly(D,L-lactide-co-glycolide) nanoparticles were prepared by a modified single emulsion method using polyvinyl alcohol or D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS) as emulsifier. The nanoparticles’ surface was further modified with surfactants such as polysorbate-80 (Tween® 80), poloxamer 188 (F68) and poloxamer 407 (F127) to enhance cellular uptake of the NPs. Results: The F68-coated poly(D,L-lactide-co-glycolide) nanoparticles demonstrated the greatest cellular uptake and achieved highest fluorescence concentration in the brain tissues over those with T80 and F127 surface modification. Conclusion: Surface modification is a feasible and efficient strategy for nanoparticles made of biodegradable polymers to deliver diagnostic and therapeutic agents across the blood–brain barrier.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Be´duneaua A, Saulniera P, Benoita J-P: Active targeting of brain tumors using nanocarriers. Biomaterials28,4947–4967 (2007).▪ Comprehensive review on the active targeting nanocarriers for the brain tumor treatment.
    • Gururangan S, Friedman HS: Innovations in design and delivery of chemotherapy for brain tumors. Neuroimaging Clin. N. Am.12(4),583–597 (2002).
    • Ehrlich P: Das Sauerstoffbedurfnis des Organismus: Ein Farbenanalytische Studie. Hirschwald A, Berlin (1885).
    • Ohnishi T, Tamai I, Sakanaka K et al.: In vivo and in vitro evidence for ATP-dependency of P-glycoprotein-mediated efflux of doxorubicin at the blood–brain barrier. Biochem. Pharmacol.49,1541–1544 (1995).
    • Misra A, Ganesh S, Shahiwala A, Shah SP: Drug delivery to the central nervous system: a review. J. Pharm. Pharm. Sci.6(2),252–273 (2003).
    • Lockman PR, Mumper RJ, Khan M A, Allen DD: Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm.28(1),1–12 (2002).
    • Vinagradov SV, Bronich TK, Kabanov AV: Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Del. Rev.54,223–233 (2002).
    • Feng SS, Mu L, Win KY, Huang GF: Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem.11,413–424 (2004).
    • Feng SS, Chien S: Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci.58,4087–4014 (2003).▪▪ Comprehensive introduction of chemotherapeutic engineering for developing new dosage forms of the drugs for chemotherapy of cancer and other diseases.
    • 10  Pandey R, Khuller GK: Polymer based drug delivery systems for mycobacterial infections. Curr. Drug Deliv.1,195–201(2004).
    • 11  Ahlin P, Kristl L, Kristl A, Vrecer F: Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration. Int. J. Pharm.239,113–120 (2002).
    • 12  Cavalli R, Bargoni A, Podio V, Muntoni E, Zara GP, Gasco MR: Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J. Pharm. Sci.92,1085–1094 (2003).
    • 13  Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK: Poly(DL-lactide-co-glycolide) nanoparticles based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother.52,981–986 (2003).
    • 14  Florence AT, Hillery AM, Hussain N, Jani PU: Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J. Control. Release36,39–46 (1995).
    • 15  Garcia-Garcia E, Andrieux K, Gilb S, Couvreur P: Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int. J. Pharm.298,274–292 (2005).
    • 16  Kaili Hu, Jingwei Li, Yehong Shen et al.: Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J. Control. Release134,55–61 (2009).
    • 17  Barnabas W, Malay Kumar S, Kumaraswamy S, Kokilampal Perumal SK, Nallupillai P, Bhojraj S: Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Euro. J. Pharm. Biopharm.70,75–84 (2008).
    • 18  Kreuter J: Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev.47,65–81 (2001).
    • 19  Calvo P, Gouritin B, Chacun H et al.: Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharmacol. Res.18,1157–1166 (2001).
    • 20  Steiniger SC, Kreuter J, Khalansky AS et al.: Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer109,759–767 (2004).
    • 21  Wang C-X, Huang L-S, Hou L-B et al.: Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res.1261,91–99 (2009).
    • 22  Ambruosi A, Gelperina S, Khalansky A, Tanski S, Theisen A, Kreuter J: Influence of surfactants, polymer and doxorubicin loading on the anti-tumor effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J. Microencapsul.23,582–592 (2006).
    • 23  Petri B, Bootz A, Khalansky A et al.: Chemotherapy of brain tumor using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J. Control. Release117,51–58 (2007).
    • 24  Gelperina S, Maksimenko O, Khalansky A et al.: Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Euro. J. Pharm. Biopharm.74(2),157–163(2010).▪ Presents the effect of formulation parameters of the surface-coated polymer nanoparticles on drug delivery to the brain.
    • 25  Kreuter J, Shamenkov D, Petrov V et al.: Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target.10,317–325 (2002).▪ Presents the effect of surface-coated nanoparticles for brain drug-delivery applications.
    • 26  Gao K, Jiang X: Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int. J. Pharm.310,213–219 (2006).
    • 27  Craparo EF, Ognibene MC, Casaletto MP et al.: Biocompatible polymeric micelles with polysorbate 80 for use in brain targeting. Nanotechnology19(48), Article Number: 485603 (2008).
    • 28  Engels FK, Mathot RAA, Verweij J: Alternative drug formulations of docetaxel: a review. Anticancer Drugs18(2),95–103 (2007).
    • 29  Koziara JM, Lockman PR, Allen DD et al.: Paclitaxel nanoparticles for the potential treatment of brain tumors. J. Control. Release99(2),259–269 (2004).
    • 30  Van Tellingen O, Beijnen JH, Verweij J et al.: Rapid esterase-sensitive breakdown of polysorbate 80 and its impact on the plasma pharmacokinetics of docetaxel and metabolites in mice. Clin. Cancer Res.5(10),2918–2924 (1999).
    • 31  Veronsi B: Characterization of the MDCK cell line for screening neurotoxicants. Neurotoxicology17,433–443 (1996).
    • 32  Polli JW, Humphreys JE, Wring SA et al.: A comparison of Madin–Darby canine kidney cells and bovine brain endothelial cells as a blood-brain barrier screen in early drug discovery. In: Progress in the reduction, refinement and replacement of animal experimentation. Balls M, van Zeller AM, Halder ME (Eds). Elsevier Sciences, Amsterdam, Netherlands 271–289 (2000).
    • 33  Lundquist S, Renftel M: The use of in vitro cell culture models for mechanistic studies and as permeability screens for the blood–brain barrier in the pharmaceutical industry-background and current status in the drug discovery process. Vascular Pharmacol.38,355–364 (2002)
    • 34  Cho MJ, Thompson DP, Cramer CT et al.: The madin darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. Pharm. Res.3,71–77 (1989).
    • 35  Wang Q, Rager JD, Weinstein K et al.: Evaluation of the MDRMDCK cell line as a permeability screen for the blood–brain barrier. Int. J. Pharm.288,349–59 (2005).
    • 36  Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM: The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials30,2790–2798 (2009).
    • 37  Sun W, Xie C, Wang H, Hu Yu: Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials25,3065–3071 (2004).
    • 38  Davda J, Labhasetwar V: Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm.233,51–59 (2002).
    • 39  Sahoo SK, Panyam J, Prabha S, Labhasetwar V: Residual polyvinyl alcohol associated with poly (D,L-lactide-coglycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release82,105–114 (2002).
    • 40  Panyam J, Zhou Wen-Zhong, Prabha S, Sahoo SK, Labhasetwar V: Rapid endo-lysosomal escape of poly(DL-lactide-coglycolide) nanoparticles: implications for drug and gene delivery. The FASEB J.16,1217–1226 (2002).
    • 41  Shan N, Chaudhari K, Dantuluri P, Murthy RSR, Das S: Paclitaxel-loaded PLGA nanoparticles surface modified with transferring and Pluronic® P85, an in vitro cell line and in vivo biodistibution studies on rat model. J. Drug Targeting17(7),533–543 (2009).
    • 42  Wilson B, Samanta MK, Santhi K, Sampath Kumar KP, Paramakrishnan N, Suresh B: Targeted delivery of tacrine into the brain with polysorbate 80-coated poly (N-butylcynoacrlate) nanoparticles. Euro. J. Pharm. Biopharm.70,75–84 (2008).
    • 43  Mu L, Feng SS: Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxols). J. Control. Release80,129–44 (2002).
    • 44  Mu L, Feng SS: A novel controlled release formulation for anticancer drug paclitaxel (Taxols): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release86, (33–48) 2003.
    • 45  Mu L, Feng SS: PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and the drug loading ratio. Pharm. Res.20,1864–1872 (2003).
    • 46  Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL: The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharm. Res14,1568–1573 (1997).
    • 47  Tabata Y, Ikada Y: Phagocytosis of polymeric microspheres by microphages. Adv. Polymer Sci.94,104–141 (1990).
    • 48  Hillery AM, Florence AT: The effect of adsorbed poloxamer 188 and 407 surfactants on the intestinal uptake of 60-nm polystyrene particles after oral administration in the rat. Int. J. Pharm.132,123–130 (1996).
    • 49  Illum L, Davis SS: Effect of the nonionic surfactant poloxamer 338 on the fate and deposition of polystyrene microspheres following intravenous administration. J. Pharm. Sci.72,1086–1088 (1983).
    • 50  Porter CJH, Moghimi SM, Illum L, Davis SS: The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett.305,62–66 (1992).
    • 51  Rutter PR, Vincent B: The adhesion of micro-organisms to surfaces: physicochemical aspects. In Microbial Adhesion to Surfaces. Berkeley RCW, Melling J, Rutter PR, Vincent B (Eds.) Ellis Horwood, Chichester UK, 79–91 (1980).
    • 52  Silberberg A: The role of membrane-bound macromolecules and macromolecules in solutions in cell/cell encounters in flowing blood. Ann. New York Acad. Sci.416,83–91 (1984).
    • 53  Tan JS, Butterfield DE, Voycheck CL, Caldwell KD, Li JT: Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood circulations in rats. Biomaterials14(11),823–833 (1993).
    • 54  Lo Y-L: Relationships between the hydrophilic–lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. J. Control. Release90,37–48 (2003).
    • 55  Wang J, Zhang Q: Uptake of cyclosporine a loaded colloidal drug carriers by mouse peritoneal microphages in vitro. Acta Phamacol. Sin.22(1),57–61 (2001).
    • 56  Batrakova EV, Kabanov AV: Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release130,98–106 (2008).