We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Emerging nanotechnology approaches for HIV/AIDS treatment and prevention

    Tewodros Mamo

    Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, 02115, USA.

    Nanotechnology Engineering, University of Waterloo, Canada

    ,
    E Ashley Moseman

    Department of Pathology, Harvard Medical School, USA

    ,
    Nagesh Kolishetti

    Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, 02115, USA.

    Harvard-MIT Center for Cancer Nanotechnology Excellence, Massachusetts Institute of Technology, MA, USA

    ,
    Carolina Salvador-Morales

    Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, 02115, USA.

    Harvard-MIT Center for Cancer Nanotechnology Excellence, Massachusetts Institute of Technology, MA, USA

    ,
    Jinjun Shi

    Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, 02115, USA.

    Harvard-MIT Center for Cancer Nanotechnology Excellence, Massachusetts Institute of Technology, MA, USA

    ,
    Daniel R Kuritzkes

    Section for Retroviral Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, USA

    ,
    Robert Langer

    Harvard-MIT Center for Cancer Nanotechnology Excellence, Massachusetts Institute of Technology, MA, USA

    Department of Chemical Engineering, Massachusetts Institute of Technology, USA

    ,
    Ulrich von Andrian

    Department of Pathology, Harvard Medical School, USA

    &
    Omid C Farokhzad

    † Author for correspondence

    Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, 02115, USA.

    Harvard-MIT Center for Cancer Nanotechnology Excellence, Massachusetts Institute of Technology, MA, USA

    Published Online:https://doi.org/10.2217/nnm.10.1

    Currently, there is no cure and no preventive vaccine for HIV/AIDS. Combination antiretroviral therapy has dramatically improved treatment, but it has to be taken for a lifetime, has major side effects and is ineffective in patients in whom the virus develops resistance. Nanotechnology is an emerging multidisciplinary field that is revolutionizing medicine in the 21st century. It has a vast potential to radically advance the treatment and prevention of HIV/AIDS. In this review, we discuss the challenges with the current treatment of the disease and shed light on the remarkable potential of nanotechnology to provide more effective treatment and prevention for HIV/AIDS by advancing antiretroviral therapy, gene therapy, immunotherapy, vaccinology and microbicides.

    Bibliography

    • Blattner W, Gallo RC, Temin HM: HIV causes AIDS. Science241(4865),515–516 (1988).
    • Gallo RC: Historical essay. The early years of HIV/AIDS. Science298(5599),1728–1730 (2002).
    • Gallo RC, Montagnier L: The discovery of HIV as the cause of AIDS. N. Engl. J. Med.349(24),2283–2285 (2003).
    • Montagnier L: Historical essay. A history of HIV discovery. Science298(5599),1727–1728 (2002).
    • Furin JJ, Behforouz HL, Shin SS et al.: Expanding global HIV treatment: Case studies from the field. Ann. NY Acad. Sci.1136,12–20 (2008).
    • Merson MH: The HIV-AIDS pandemic at 25 – the global response. N. Engl J. Med.354(23),2414–2417 (2006).
    • Joint United Nations Programme on HIV/AIDS: Report on the global HIV/AIDS epidemic. Joint United Nations Programme on HIV/AIDS. Geneva, Switzerland (2008).
    • Rodriguez-Monguio R, Seoane-Vazquez E: Patent life of antiretroviral drugs approved in the US from 1987 to 2007. AIDS Care1–9 (2009).
    • Lang L: FDA grants tentative approval for 75th generic antiretroviral drug. Gastroenterology136(1),5 (2009).
    • 10  Walensky RP, Paltiel AD, Losina E et al.: The survival benefits of AIDS treatment in the United States. J. Infect. Dis.194(1),11–19 (2006).
    • 11  Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ: The challenge of finding a cure for HIV infection. Science323(5919),1304–1307 (2009).
    • 12  Richman DD: HIV chemotherapy. Nature410(6831),995–1001 (2001).
    • 13  Ledford H: Merck’s HIV vaccine flop brings vectors under closer scrutiny. Nat. Biotechnol.26(1),3–4 (2008).
    • 14  Ledford H: HIV vaccine developers battle on, despite high-profile failures. Nat. Biotechnol.26(6),591–592 (2008).
    • 15  Uberla K: HIV vaccine development in the aftermath of the step study: Re-focus on occult HIV infection? PLoS Pathog.4(8),e1000114 (2008).
    • 16  Cohen J: Aids research. Microbicide fails to protect against HIV. Science319(5866),1026–1027 (2008).
    • 17  Grant RM, Hamer D, Hope T et al.: Whither or wither microbicides? Science321(5888),532–534 (2008).
    • 18  Farokhzad OC: Nanotechnology for drug delivery: The perfect partnership. Expert Opin. Drug Deliv.5(9),927–929 (2008).
    • 19  Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC: Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther.83(5),761–769 (2008).
    • 20  Ferrari M: Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer5(3),161–171 (2005).
    • 21  Nie S, Xing Y, Kim GJ, Simons JW: Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng.9,257–288 (2007).
    • 22  Heath JR, Davis ME: Nanotechnology and cancer. Ann. Rev. Med.59,251–265 (2008).
    • 23  Harrigan PR, Hogg RS, Dong WW et al.: Predictors of HIV drug-resistance mutations in a large antiretroviral-naive cohort initiating triple antiretroviral therapy. J. Infect. Dis.191(3),339–347 (2005).
    • 24  Chun TW, Davey RT Jr, Engel D, Lane HC, Fauci AS: Re-emergence of HIV after stopping therapy. Nature401(6756),874–875 (1999).
    • 25  Marsden MD, Zack JA: Eradication of HIV: Current challenges and new directions. J. Antimicrob. Chemother.63(1),7–10 (2009).
    • 26  Sax PE, Cohen CJ, Kuritzkes DR: HIV Essentials. Physicians’ Press, Royal Oak, MI, USA (2007).
    • 27  Lamers SL, Salemi M, Galligan DC et al.: Extensive HIV-1 intra-host recombination is common in tissues with abnormal histopathology. PLoS One4(3),E5065 (2009).
    • 28  McGee B, Smith N, Aweeka F: HIV pharmacology: Barriers to the eradication of HIV from the CNS. HIV Clin. Trials7(3),142–153 (2006).
    • 29  Vyas TK, Shah L, Amiji MM: Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin. Drug Deliv.3(5),613–628 (2006).
    • 30  Wan L, Pooyan S, Hu P, Leibowitz MJ, Stein S, Sinko PJ: Peritoneal macrophage uptake, pharmacokinetics and biodistribution of macrophage-targeted peg-fmlf (n-formyl-methionyl-leucyl-phenylalanine) nanocarriers for improving HIV drug delivery. Pharm. Res.24(11),2110–2119 (2007).
    • 31  Nowacek A, Gendelman HE: Nanoart, neuroAIDS and CNS drug delivery. Nanomed.4(5),557–574 (2009).
    • 32  Farokhzad OC, Langer R: Impact of nanotechnology on drug delivery. ACS Nano3(1),16–20 (2009).
    • 33  Davis ME, Chen ZG, Shin DM: Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov.7(9),771–782 (2008).
    • 34  Amiji MM, Vyas TK, Shah LK: Role of nanotechnology in HIV/AIDS treatment: Potential to overcome the viral reservoir challenge. Discov. Med.6(34),157–162 (2006).
    • 35  Baert L, van’t Klooster G, Dries W et al.: Development of a long-acting injectable formulation with nanoparticles of rilpivirine (tmc278) for HIV treatment. Eur. J. Pharm. Biopharm.72(3),502–508 (2009).
    • 36  Dou H, Destache CJ, Morehead JR et al.: Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood108(8),2827–2835 (2006).
    • 37  Dou H, Morehead J, Destache CJ et al.: Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology358(1),148–158 (2007).
    • 38  Dou H, Grotepas CB, McMillan JM et al.: Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J. Immunol.183(1),661–669 (2009).
    • 39  Garg M, Asthana A, Agashe HB, Agrawal GP, Jain NK: Stavudine-loaded mannosylated liposomes: In-vitro anti-HIV-i activity, tissue distribution and pharmacokinetics. J. Pharm. Pharmacol.58(5),605–616 (2006).
    • 40  Garg M, Dutta T, Jain NK: Reduced hepatic toxicity, enhanced cellular uptake and altered pharmacokinetics of stavudine loaded galactosylated liposomes. Eur. J. Pharm. Biopharm.67(1),76–85 (2007).
    • 41  Garg M, Garg BR, Jain S et al.: Radiolabeling, pharmacoscintigraphic evaluation and antiretroviral efficacy of stavudine loaded 99mtc labeled galactosylated liposomes. Eur. J. Pharm. Sci.33(3),271–281 (2008).
    • 42  Kaur CD, Nahar M, Jain NK: Lymphatic targeting of zidovudine using surface-engineered liposomes. J. Drug Target16(10),798–805 (2008).
    • 43  Dutta T, Agashe HB, Garg M, Balakrishnan P, Kabra M, Jain NK: Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target15(1),89–98 (2007).
    • 44  Dutta T, Jain NK: Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim. Biophys. Acta1770(4),681–686 (2007).
    • 45  Dutta T, Garg M, Jain NK: Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur. J. Pharm. Sci.34(2–3),181–189 (2008).
    • 46  Wan L, Zhang X, Pooyan S et al.: Optimizing size and copy number for PEG-FMLF (n-formyl-methionyl-leucyl-phenylalanine) nanocarrier uptake by macrophages. Bioconjug. Chem.19(1),28–38 (2008).
    • 47  Ganser-Pornillos BK, Yeager M, Sundquist WI: The structural biology of HIV assembly. Curr. Opin. Struct. Biol.18(2),203–217 (2008).
    • 48  Pornillos O, Ganser-Pornillos BK, Kelly BN et al.: X-ray structures of the hexameric building block of the HIV capsid. Cell137(7),1282–1292 (2009).
    • 49  Friedman SH, Decamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL: Inhibition of the HIV-1 protease by fullerene derivatives – model-building studies and experimental-verification. J. Am. Chem. Soc.115(15),6506–6509 (1993).
    • 50  Bosi S, Da Ros T, Spalluto G, Balzarini J, Prato M: Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorg. Med. Chem. Lett.13(24),4437–4440 (2003).
    • 51  Kotelnikova RA, Bogdanov GN, Frog EC et al.: Nanobionics of pharmacologically active derivatives of fullerene c-60. J. Nanopart. Res.5(5–6),561–566 (2003).
    • 52  Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M: Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett.15(15),3615–3618 (2005).
    • 53  Troshina OA, Troshin PA, Peregudov AS, Kozlovskiy VI, Balzarini J, Lyubovskaya RN: Chlorofullerene c60cl6: A precursor for straightforward preparation of highly water-soluble polycarboxylic fullerene derivatives active against HIV. Org. Biomol. Chem.5(17),2783–2791 (2007).
    • 54  Durdagi S, Supuran CT, Strom TA et al.: In silico drug screening approach for the design of magic bullets: A successful example with anti-HIV fullerene derivatized amino acids. J. Chem. Inf. Model49(5),1139–1143 (2009).
    • 55  Tanimoto S, Sakai S, Matsumura S, Takahashi D, Toshima K: Target-selective photo-degradation of HIV-1 protease by a fullerene–sugar hybrid. Chem. Commun. (44),5767–5769 (2008).
    • 56  Blanzat M, Turrin CO, Aubertin AM et al.: Dendritic catanionic assemblies: In vitro anti-HIV activity of phosphorus-containing dendrimers bearing gal beta(1)cer analogues. Chembiochem.6(12),2207–2213 (2005).
    • 57  Wang W, Guo ZP, Chen Y, Liu T, Jiang L: Influence of generation 2–5 of pamam dendrimer on the inhibition of tat peptide/tar rna binding in HIV-1 transcription. Chem. Biol. Drug Des.68(6),314–318 (2006).
    • 58  Elechiguerra JL, Burt JL, Morones JR et al.: Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology3,6 (2005).
    • 59  Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM: Silver nanoparticles fabricated in hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. (40),5059–5061 (2005).
    • 60  Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C: Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc.130(22),6896–6897 (2008).
    • 61  Rossi JJ, June CH, Kohn DB: Genetic therapies against HIV. Nat. Biotechnol.25(12),1444–1454 (2007).
    • 62  Haasnoot J, Westerhout EM, Berkhout B: Rna interference against viruses: strike and counterstrike. Nat. Biotechnol.25(12),1435–1443 (2007).
    • 63  Li M, Rossi JJ: Lentiviral vector delivery of siRNA and shrna encoding genes into cultured and primary hematopoietic cells. Methods Mol. Biol.433,287–299 (2008).
    • 64  Morris KV, Rossi JJ: Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther.13(6),553–558 (2006).
    • 65  Li M, Li H, Rossi JJ: RNAI in combination with a ribozyme and tar decoy for treatment of HIV infection in hematopoietic cell gene therapy. Ann. NY Acad. Sci.1082,172–179 (2006).
    • 66  Li MJ, Kim J, Li S et al.: Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shrna, anti-ccr5 ribozyme, and a nucleolar-localizing tar decoy. Mol. Ther.12(5),900–909 (2005).
    • 67  Lee SK, Dykxhoorn DM, Kumar P et al.: Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood106(3),818–826 (2005).
    • 68  Barnor JS, Miyano-Kurosaki N, Yamaguchi K, Abumi Y, Ishikawa K, Yamamoto N: Lentiviral-mediated delivery of combined HIV-1 decoy tar and VIF siRNA as a single rna molecule that cleaves to inhibit HIV-1 in transduced cells. Nucleosides Nucleotides Nucleic Acids24(5–7),431–434 (2005).
    • 69  Mitsuyasu RT, Merigan TC, Carr A et al.: Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat. Med.15(3),285–292 (2009).
    • 70  Mintzer MA, Simanek EE: Nonviral vectors for gene delivery. Chem. Rev.109(2),259–302 (2009).
    • 71  Lundin KE, Simonson OE, Moreno PM et al.: Nanotechnology approaches for gene transfer. Genetica137(1),47–56 (2009).
    • 72  Gao X, Kim KS, Liu DX: Nonviral gene delivery: What we know and what is next. AAPS J.9(1),E92–E104 (2007).
    • 73  Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature391(6669),806–811 (1998).
    • 74  Whitehead KA, Langer R, Anderson DG: Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov.8(2),129–138 (2009).
    • 75  Berkhout B, ter Brake O: Towards a durable rnai gene therapy for HIV-AIDS. Expert Opin. Biol. Ther.9(2),161–170 (2009).
    • 76  Davis ME: The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharm.6(3),659–668 (2009).
    • 77  Eguchi A, Meade BR, Chang YC et al.: Efficient siRNA delivery into primary cells by a peptide transduction domain-dsrna binding domain fusion protein. Nat. Biotechnol.27(6),567–571 (2009).
    • 78  Song E, Zhu P, Lee SK et al.: Antibody mediated in vivo delivery of small interfering rnas via cell-surface receptors. Nat. Biotechnol.23(6),709–717 (2005).
    • 79  Liu Z, Winters M, Holodniy M, Dai H: Sirna delivery into human t cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed.46(12),2023–2027 (2007).
    • 80  Weber N, Ortega P, Clemente MI et al.: Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. J. Control Release132(1),55–64 (2008).
    • 81  Kumar P, Ban HS, Kim SS et al.: T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell134(4),577–586 (2008).
    • 82  Kumar P, Wu HQ, McBride JL et al.: Transvascular delivery of small interfering RNA to the central nervous system. Nature448(7149),39–43 (2007).
    • 83  McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes B: The immune response during acute HIV-1 infection: Clues for vaccine development. Nat. Rev. Immunol. (2009).
    • 84  Pett SL: Immunotherapies in HIV-1 infection. Curr. Opin. HIV AIDS4(3),188–193 (2009).
    • 85  Gandhi RT, Walker BD: Immunologic control of HIV-1. Ann. Rev. Med.53,149–172 (2002).
    • 86  Cohen J: Building an HIV-proof immune system. Science317(5838),612–614 (2007).
    • 87  Rinaldo CR: Dendritic cell-based human immunodeficiency virus vaccine. J. Intern. Med.265(1),138–158 (2009).
    • 88  Banchereau J, Briere F, Caux C et al.: Immunobiology of dendritic cells. Ann. Rev. Immunol.18,767–811 (2000).
    • 89  Shortman K, Liu YJ: Mouse and human dendritic cell subtypes. Nat. Rev. Immunol.2(3),151–161 (2002).
    • 90  Bourinbaiar AS, Root-Bernstein RS, Abulafia-Lapid R et al.: Therapeutic AIDS vaccines. Curr. Pharm. Des.12(16),2017–2030 (2006).
    • 91  Dorrell L, Williams P, Suttill A et al.: Safety and tolerability of recombinant modified vaccinia virus ankara expressing an HIV-1 gag/multiepitope immunogen (MVA.HIVA) in HIV-1-infected persons receiving combination antiretroviral therapy. Vaccine25(17),3277–3283 (2007).
    • 92  Gandhi RT, O’Neill D, Bosch RJ et al.: A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. Canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. Vaccine27(43),6088–6094 (2009).
    • 93  Whiteside TL, Piazza P, Reiter A et al.: Production of a dendritic cell-based vaccine containing inactivated autologous virus for therapy of patients with chronic human immunodeficiency virus type 1 infection. Clin. Vaccine Immunol.16(2),233–240 (2009).
    • 94  Tacken PJ, de Vries IJM, Torensma R, Figdor CG: Dendritic-cell immunotherapy: From ex vivo loading to in vivo targeting. Nat. Rev. Immunol.7(10),790–802 (2007).
    • 95  Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA: In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control Release112(1),26–34 (2006).
    • 96  Hori Y, Winans AM, Huang CC, Horrigan EM, Irvine DJ: Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials29(27),3671–3682 (2008).
    • 97  Elamanchili P, Diwan M, Cao M, Samuel J: Characterization of poly(d,l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine22(19),2406–2412 (2004).
    • 98  Aline F, Brand D, Pierre J et al.: Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic pla nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination. Vaccine27(38),5284–5291 (2009).
    • 99  Lori F, Calarota SA, Lisziewicz J: Nanochemistry-based immunotherapy for HIV-1. Curr. Med. Chem.14(18),1911–1919 (2007).
    • 100  Bass E, Feuer C, Warren M: Aids vaccine research and advocacy: An update. BETA21(2),24–30 (2009).
    • 101  Jefferys R: Vaccine failure is not a ‘crisis’ for HIV research. Nature453(7196),719–720 (2008).
    • 102  Barouch DH: Challenges in the development of an HIV-1 vaccine. Nature455(7213),613–619 (2008).
    • 103  Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen presentation and t cell stimulation by dendritic cells. Ann. Rev. Immunol.20,621–667 (2002).
    • 104  Trombetta ES, Mellman I: Cell biology of antigen processing in vitro and in vivo. Ann. Rev. Immunol.23,975–1028 (2005).
    • 105  McHeyzer-Williams LJ, McHeyzer-Williams MG: Antigen-specific memory b cell development. Ann. Rev. Immunol.23,487–513 (2005).
    • 106  Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM: Design opportunities for actively targeted nanoparticle vaccines. Nanomed.3(3),343–355 (2008).
    • 107  Csaba N, Garcia-Fuentes M, Alonso MJ: Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev.61(2),140–157 (2009).
    • 108  Sakaue G, Hiroi T, Nakagawa Y et al.: HIV mucosal vaccine: Nasal immunization with gp160-encapsulated hemagglutinating virus of japan-liposome induces antigen-specific ctls and neutralizing antibody responses. J. Immunol.170(1),495–502 (2003).
    • 109  Singh SK, Bisen PS: Adjuvanticity of stealth liposomes on the immunogenicity of synthetic gp41 epitope of HIV-1. Vaccine24(19),4161–4166 (2006).
    • 110  Wagner A, Stiegler G, Vorauer-Uhl K et al.: One step membrane incorporation of viral antigens as a vaccine candidate against HIV. J. Liposome Res.17(3–4),139–154 (2007).
    • 111  Watson DS, Huang Z, Szoka FC Jr: All-trans retinoic acid potentiates the antibody response in mice to a lipopeptide antigen adjuvanted with liposomal lipid a. Immunol. Cell Biol. (2009).
    • 112  Letvin NL: Progress and obstacles in the development of an AIDS vaccine. Nat. Rev. Immunol.6(12),930–939 (2006).
    • 113  Burton DR, Desrosiers RC, Doms RW et al.: HIV vaccine design and the neutralizing antibody problem. Nat. Immunol.5(3),233–236 (2004).
    • 114  Takeda K, Kaisho T, Akira S: Toll-like receptors. Ann. Rev. Immunol.21,335–376 (2003).
    • 115  Fairman J, Moore J, Lemieux M et al.: Enhanced in vivo immunogenicity of SIV vaccine candidates with cationic liposome-DNA complexes in a rhesus macaque pilot study. Hum. Vaccin.5(2), (2008).
    • 116  Ott G, Barchfeld GL, Chernoff D, Radhakrishnan R, van Hoogevest P, Van Nest G: Mf59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm. Biotechnol.6,277–296 (1995).
    • 117  Copland MJ, Rades T, Davies NM, Baird MA: Lipid based particulate formulations for the delivery of antigen. Immunol. Cell. Biol.83(2),97–105 (2005).
    • 118  Tritto E, Mosca F, De Gregorio E: Mechanism of action of licensed vaccine adjuvants. Vaccine27(25–26),3331–3334 (2009).
    • 119  Leung L, Srivastava IK, Kan E et al.: Immunogenicity of HIV-1 env and gag in baboons using a DNA prime/protein boost regimen. AIDS18(7),991–1001 (2004).
    • 120  Brave A, Hinkula J, Cafaro A et al.: Candidate HIV-1 gp140dv2, gag and tat vaccines protect against experimental HIV-1/MULV challenge. Vaccine25(39–40),6882–6890 (2007).
    • 121  Burke B, Gomez-Roman VR, Lian Y et al.: Neutralizing antibody responses to subtype b and c adjuvanted HIV envelope protein vaccination in rabbits. Virology387(1),147–156 (2009).
    • 122  Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR Jr: Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses24(2),271–281 (2008).
    • 123  Ataman-Onal Y, Munier S, Ganee A et al.: Surfactant-free anionic pla nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J. Control Release112(2),175–185 (2006).
    • 124  Lamalle-Bernard D, Munier S, Compagnon C et al.: Coadsorption of HIV-1 p24 and gp120 proteins to surfactant-free anionic pla nanoparticles preserves antigenicity and immunogenicity. J. Control Release115(1),57–67 (2006).
    • 125  Guillon C, Mayol K, Terrat C et al.: Formulation of HIV-1 tat and p24 antigens by pla nanoparticles or mf59 impacts the breadth, but not the magnitude, of serum and faecal antibody responses in rabbits. Vaccine25(43),7491–7501 (2007).
    • 126  Miyake A, Akagi T, Enose Y et al.: Induction of HIV-specific antibody response and protection against vaginal sHIV transmission by intranasal immunization with inactivated sHIV-capturing nanospheres in macaques. J. Med. Virol.73(3),368–377 (2004).
    • 127  Kawamura M, Wang X, Uto T et al.: Induction of dendritic cell-mediated immune responses against HIV-1 by antigen-capturing nanospheres in mice. J. Med. Virol.76(1),7–15 (2005).
    • 128  Akagi T, Wang X, Uto T, Baba M, Akashi M: Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials28(23),3427–3436 (2007).
    • 129  Wang X, Uto T, Akagi T, Akashi M, Baba M: Induction of potent CD8+ T-cell responses by novel biodegradable nanoparticles carrying human immunodeficiency virus type 1 gp120. J. Virol.81(18),10009–10016 (2007).
    • 130  Wang X, Uto T, Akagi T, Akashi M, Baba M: Poly(gamma-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: Potential for an AIDS vaccine. J. Med. Virol.80(1),11–19 (2008).
    • 131  Stoneburner RL, Low-Beer D: Population-level HIV declines and behavioral risk avoidance in uganda. Science304(5671),714–718 (2004).
    • 132  Rohan LC, Sassi AB: Vaginal drug delivery systems for HIV prevention. AAPS J.11(1),78–87 (2009).
    • 133  Saidi H: Microbicides: An emerging science of HIV-1 prevention in women-15th conference on retroviruses and opportunistic infections, boston, USA, 3–6 February 2008. Rev. Med. Virol.19(2),69–76 (2009).
    • 134  das Neves J, Bahia MF: Gels as vaginal drug delivery systems. Int. J. Pharm.318(1–2),1–14 (2006).
    • 135  Klasse PJ, Shattock R, Moore JP: Antiretroviral drug-based microbicides to prevent HIV-1 sexual transmission. Ann. Rev. Med.59,455–471 (2008).
    • 136  Rupp R, Rosenthal SL, Stanberry LR: Vivagel (spl7013 gel): A candidate dendrimer – microbicide for the prevention of HIV and hsv infection. Int. J. Nanomedicine2(4),561–566 (2007).
    • 137  McCarthy TD, Karellas P, Henderson SA et al.: Dendrimers as drugs: Discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm.2(4),312–318 (2005).
    • 138  Jiang YH, Emau P, Cairns JS et al.: Spl7013 gel as a topical microbicide for prevention of vaginal transmission of sHIV89.6p in macaques. AIDS Res. Hum. Retroviruses21(3),207–213 (2005).
    • 139  Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC: Targeted delivery of psc-rantes for HIV-1 prevention using biodegradable nanoparticles. Pharm. Res.26(3),502–511 (2009).
    • 140  Lederman MM, Veazey RS, Offord R et al.: Prevention of vaginal sHIV transmission in rhesus macaques through inhibition of ccr5. Science306(5695),485–487 (2004).
    • 141  Palliser D, Chowdhury D, Wang QY et al.: An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature439(7072),89–94 (2006).
    • 142  Rossi JJ: Topical antiviral siRNA: A practical siRNA microbicide? Gene Ther.13(21),1493–1494 (2006).
    • 143  Wu Y, Navarro F, Lal A et al.: Durable protection from herpes simplex virus-2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell. Host Microbe5(1),84–94 (2009).
    • 144  Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM: Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat. Mater.8(6),526–533 (2009).
    • 145  Zhang LF, Chan JM, Gu FX et al.: Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano2(8),1696–1702 (2008).
    • 146  Zhang LF, Radovic-Moreno AF, Alexis F et al.: Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. Chem. Med. Chem.2(9),1268–1271 (2007).
    • 147  Wang Y, Gao SJ, Ye WH, Yoon HS, Yang YY: Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat. Mater.5(10),791–796 (2006).
    • 148  Lee ALZ, Wang Y, Cheng HY, Pervaiz S, Yang YY: The co-delivery of paclitaxel and herceptin using cationic micellar nanoparticles. Biomaterials30(5),919–927 (2009).
    • 149  Shacklett BL: Can the new humanized mouse model give HIV research a boost. PLoS Med.5(1),e13 (2008).
    • 150  Shultz LD, Ishikawa F, Greiner DL: Humanized mice in translational biomedical research. Nat. Rev. Immunol.7(2),118–130 (2007).
    • 151  Damge C, Reis CP, Maincent P: Nanoparticle strategies for the oral delivery of insulin. Expert Opin. Drug Del.5(1),45–68 (2008).
    • 152  Lai SK, Wang YY, Hanes J: Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Del. Rev.61(2),158–171 (2009).
    • 153  Tang BC, Dawson M, Lai SK et al.: Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl Acad. Sci. USA106(46),19268–19273 (2009).
    • 154  Xing JF, Deng LD, Li J, Dong AJ: Amphiphilic poly{[α-maleic anhydride-omega-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} graft copolymer nanoparticles as carriers for transdermal drug delivery. Int. J. Nanomedicine4,227–232 (2009).