We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Making nanoparticles protein-like

    Aoneng Cao

    *Author for correspondence:

    E-mail Address: ancao@shu.edu.cn

    Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China

    &
    Haifang Wang

    **Author for correspondence: 

    E-mail Address: hwang@shu.edu.cn

    Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China

    Published Online:https://doi.org/10.2217/nnm-2024-0084
    Free first page

    References

    • 1. Wilhelm S, Tavares AJ, Dai D et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1(5), 16014 (2016).
    • 2. Sun D, Zhou S, Gao W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 14, 12281–12290 (2020).
    • 3. Yang S-T, Liu Y, Wang Y-W, Cao A. Biosafety and bioapplication of nanomaterials by designing protein–nanoparticle interactions. Small 9(9–10), 1635–1653 (2013).
    • 4. Yang S-T, Wang H, Guo L, Gao Y, Liu Y, Cao A. Interaction of fullerenol with lysozyme investigated by experimental and computational approaches. Nanotechnology 19, 395101 (2008).
    • 5. Luo L, Liu Y-Y, Gao T et al. Characterization of the specific interactions between nanoparticles and proteins at residue-resolution by alanine scanning mutagenesis. ACS Appl. Mater. Interfaces 12, 34514–34523 (2020).
    • 6. Wu H, Li C-S, Tang X-R et al. Impact of calcium ions at physiological concentrations on the adsorption behavior of proteins on silica nanoparticles. J. Colloid Interface Sci. 656, 35–46 (2024).
    • 7. El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).
    • 8. Kotov NA. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).
    • 9. Yan G-H, Wang K, Shao Z et al. Artificial antibody created by conformational reconstruction of the complementary-determining region on gold nanoparticles. Proc. Natl Acad. Sci. USA 115, E34–E43 (2018).
    • 10. Liu RR, Song LT, Meng YJ, Zhu M, Zhai HL. Study on biocompatibility of AuNPs and theoretical design of a multi-CDR-functional nanobody. J. Phys. Chem. B 123, 7570–7577 (2019).
    • 11. Wang Y, Wang X, Gao T et al. Folding of flexible protein fragments and design of nanoparticle-based artificial antibody targeting lysozyme. J. Phys. Chem. B 126(27), 5045–5054 (2022).
    • 12. Willson R. Faculty opinions recommendation of [Yan GH et al., Proc. Natl. Acad. Sci. USA 2018, 115(1), E34-E43]. Faculty Opin. (2018). https://dx.doi.org/10.3410/f.732327157.793541057
    • 13. Gao T, Lou C, Wang Y, Wang H, Cao A. Anti-carbonic anhydrase goldbodies by conformational reconstruction of the complementary-determining regions of phage-displayed antibodies. ChemMedChem 18, e202300185 (2023).
    • 14. Xu Y, Li W, Gao T, Cao A. Goldbody as a replacement of natural antibody in enzyme linked immunosorbent assay for detection of lysozyme. Prog. Biochem. Biophys. 49, 242–249 (2022).
    • 15. Li W, Gao T, Lou C, Wang H, Liu Y, Cao A. Biotinylated Au nanoparticle-based artificial antibody for detection of lysozyme by the lateral flow immunoassay and enzyme-linked immunosorbent assay. ACS Appl. Nano Mater. 5, 12571–12581 (2022).
    • 16. Cao A. The last secret of protein folding: the real relationship between long-range interactions and local structures. Protein J. 39, 422–433 (2020).
    • 17. Cao A. “Confined lowest energy structure fragments (CLESFs)” hypothesis for protein structure and the “stone age” of protein prebiotic evolution. Acta Phys-Chim. Sin. 36, 1907002 (2020).
    • 18. Anfinsen CB. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).
    • 19. Liu Q, Sheng L, Liu Y-Y et al. A potential MDM2 inhibitor formed by restoring the native conformation of the p53 alpha-helical peptide on gold nanoparticles. ChemMedChem 17, e202100623 (2022).
    • 20. Xu J, Gao T, Sheng L et al. Conformationally engineering flexible peptides on silver nanoparticles. iScience 25, 104324 (2022).
    • 21. Sheng L, Xu J, Dai J, Wang H, Cao A. Conformational engineering of antibody fragments on the surface of platinum nanoparticles. Prog. Biochem. Biophys. 51(3), 647–657 (2024).
    • 22. Gao T, Liu Y-Y, Lou C, Wang H, Liu Y, Cao A. PEGylation of Goldbody: PEG-aided conformational engineering of peptides on gold nanoparticles. RSC Adv. 12, 26123 (2022).