We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Piezoelectric nanomaterials: latest applications in biomedicine and challenges in clinical translation

    Attilio Marino

    *Author for correspondence:

    E-mail Address: attilio.marino@iit.it

    Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy

    ,
    Arianna Bargero

    Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy

    Politecnico di Torino, Department of Mechanical & Aerospace Engineering, Corso Duca degli Abruzzi 24, Torino, 10129, Italy

    &
    Gianni Ciofani

    **Author for correspondence:

    E-mail Address: gianni.ciofani@iit.it

    Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy

    Published Online:https://doi.org/10.2217/nnm-2024-0080

    Tweetable abstract

    Nano-sized piezoelectric materials allow for precise interaction with living systems to local deliver electrical cues. Recent innovations enhance their potential in tissue engineering and regenerative medicine.

    References

    • 1. Wang X, Shi J. Piezoelectric nanogenerators for self-powered nanodevices. In: Piezoelectric Nanomaterials for Biomedical Applications. Ciofani GMenciassi A (Eds.), Springer-Verlag Berlin, Heidelberg, Germany, 135–172 (2012).
    • 2. Cafarelli A, Marino A, Vannozzi L et al. Piezoelectric nanomaterials activated by ultrasound: the pathway from discovery to future clinical adoption. ACS Nano 15(7), 11066–11086 (2021).
    • 3. Kapat K, Shubhra QTH, Zhou M, Leeuwenburgh S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater. 30(44), 1909045 (2020).
    • 4. Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021).
    • 5. Tang Y, Wu C, Wu Z, Hu L, Zhang W, Zhao K. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci. Rep. 7(1), 1–12 (2017).
    • 6. Bera S, Mondal S, Xue B, Shimon LJW, Cao Y, Gazit E. Rigid helical-like assemblies from a self-aggregating tripeptide. Nat. Mater. 18(5), 503–509 (2019).
    • 7. Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4(2), 610–614 (2010).
    • 8. Wang X, Song J, Liu J, Zhong LW. Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007).
    • 9. Ciofani G, Danti S, D'Alessandro D et al. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4(10), 6267–6277 (2010).
    • 10. Marino A, Arai S, Hou Y et al. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9(7), 7678–7689 (2015).
    • 11. Rojas C, Tedesco M, Massobrio P et al. Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J. Neural Eng. 15(3), 036016 (2018).
    • 12. Genchi GG, Ceseracciu L, Marino A et al. P(VDF-TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells. Adv. Healthc. Mater. 5(14), 1808–1820 (2016).
    • 13. Liu L, Chen B, Liu K et al. Wireless manipulation of magnetic/piezoelectric micromotors for precise neural stem-like cell stimulation. Adv. Funct. Mater. 30(11), 1910108 (2020).
    • 14. Kim T, Kim HJ, Choi W et al. Deep brain stimulation by blood–brain-barrier-crossing piezoelectric nanoparticles generating current and nitric oxide under focused ultrasound. Nat. Biomed. Eng. 7(2), 149–163 (2022).
    • 15. Marino A, Genchi GG, Mattoli V, Ciofani G. Piezoelectric nanotransducers: the future of neural stimulation. Nano Today 14, 9–12 (2017).
    • 16. Zhao D, Feng P-J, Liu J-H et al. Electromagnetized-nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain. Adv. Mater. 32(43), 2003800 (2020).
    • 17. Ricotti L, Cafarelli A, Manferdini C et al. Ultrasound stimulation of piezoelectric nanocomposite hydrogels boosts chondrogenic differentiation in vitro, in both a normal and inflammatory milieu. ACS Nano 18(3), 2047–2065 (2024).
    • 18. Zhao F, Zhang C, Liu J et al. Periosteum structure/function-mimicking bioactive scaffolds with piezoelectric/chem/nano signals for critical-sized bone regeneration. Chem. Eng. J. 402, 126203 (2020).
    • 19. Kaliannagounder VK, Raj NPMJ, Unnithan AR et al. Remotely controlled self-powering electrical stimulators for osteogenic differentiation using bone inspired bioactive piezoelectric whitlockite nanoparticles. Nano Energy 85, 105901 (2021).
    • 20. Marino A, Battaglini M, De Pasquale D, Degl'Innocenti A, Ciofani G. Ultrasound-activated piezoelectric nanoparticles inhibit proliferation of breast cancer cells. Sci. Rep. 8(1), 6257 (2018).
    • 21. Marino A, Almici E, Migliorin S et al. Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. J. Colloid Interf. Sci. 538, 449–461 (2019).
    • 22. Pucci C, Marino A, Şen Ö et al. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater. 139, 218–236 (2022).
    • 23. Şen Ö, Marino A, Pucci C, Ciofani G. Modulation of anti-angiogenic activity using ultrasound-activated nutlin-loaded piezoelectric nanovectors. Mater. Today Bio. 13, 100196 (2022).
    • 24. Li C, Xiao C, Zhan L et al. Wireless electrical stimulation at the nanoscale interface induces tumor vascular normalization. Bioact. Mater. 18, 399–408 (2022).
    • 25. Wu M, Zhang Z, Liu Z et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 37, 101104 (2021).
    • 26. Zhao H, Xue S, Hussherr MD, Teixeira AP, Fussenegger M. Autonomous push button-controlled rapid insulin release from a piezoelectrically activated subcutaneous cell implant. Sci. Adv. 8(24), 4389 (2022).
    • 27. Chen Y, Shi J, Yang G et al. High-performance sono-piezoelectric nanocomposites enhanced by interfacial coupling effects for implantable nanogenerators and actuators. Mater. Horizons 11(4), 995–1007 (2024).
    • 28. Dani SS, Tripathy A, Alluri NR, Balasubramaniam S, Ramadoss A. A critical review: the impact of electrical poling on the longitudinal piezoelectric strain coefficient. Mater. Adv. 3(24), 8886–8921 (2022).
    • 29. Yu S, Milam-Guerrero JA, Tai Y et al. Maximizing polyacrylonitrile nanofiber piezoelectric properties through the optimization of electrospinning and post-thermal treatment processes. ACS Appl. Polym. Mater. 4(1), 635–644 (2022).
    • 30. Han M, Yildiz E, Bozuyuk U et al. Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat. Commun. 15(1), 1–17 (2024).
    • 31. Truong Hoang Q, Kim DY, Park HS et al. Oxygen-supplying piezocatalytic therapy of hypoxic tumors by intratumoral delivery of pH-responsive multicompartmental carriers with sequential drug release capability. Adv. Funct. Mater. 2306078 (2024).