We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Secondary metabolites in topical infectious diseases and nanomedicine applications

    Ankit Sahoo

    College of Pharmacy, J.S. University, Shikohabad, Firozabad, Utta Pradesh, 283135, India

    ,
    Khusbu Dwivedi

    Department of Pharmaceutics, Shambhunath Institute of Pharmacy, Jhalwa, Prayagraj, 211015, Uttar Pradesh, India

    ,
    Waleed H Almalki

    Department of Pharmacology & Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia

    ,
    Ashok Kumar Mandal

    Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia

    ,
    Abdurrahman Alhamyani

    Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq, 65779-7738, Saudi Arabia

    ,
    Obaid Afzal

    Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia

    ,
    Abdulmalik Saleh Alfawaz Altamimi

    Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia

    ,
    Nabil K Alruwaili

    Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia

    ,
    Pradip Kumar Yadav

    Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India

    ,
    Md Abul Barkat

    Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al-Batin, 39524, Saudi Arabia

    ,
    Tanuja Singh

    Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 10025, India

    &
    Mahfoozur Rahman

    *Author for correspondence:

    E-mail Address: mahfoozur.rahman@shiats.edu.in

    Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, 211007, Uttar Pradesh, India

    Published Online:https://doi.org/10.2217/nnm-2024-0017

    Topical infection affects nearly one-third of the world's population; it may result from poor sanitation, hygienic conditions and crowded living and working conditions that accelerate the spread of topical infectious diseases. The problems associated with the anti-infective agents are drug resistance and long-term therapy. Secondary metabolites are obtained from plants, microorganisms and animals, but they are metabolized inside the human body. The integration of nanotechnology into secondary metabolites is gaining attention due to their interaction at the subatomic and skin-tissue levels. Hydrogel, liposomes, lipidic nanoparticles, polymeric nanoparticles and metallic nanoparticles are the most suitable carriers for secondary metabolite delivery. Therefore, the present review article extensively discusses the topical applications of nanomedicines for the effective delivery of secondary metabolites.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Mohamed SA, Hargest R. Surgical anatomy of the skin. Surg. (United Kingdom) 40(1), 1–7 (2022).
    • 2. Watkins K. Emerging infectious diseases: a review. Curr. Emerg. Hosp. Med. Rep. 6(3), 86–93 (2018).
    • 3. Flohr C, Hay R. Putting the burden of skin diseases on the global map. Br. J. Dermatol. 184(2), 189–190 (2021).
    • 4. Baker RE, Mahmud AS, Miller IF et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20(4), 193–205 (2022). • Review that presents information about infectious diseases across the globe.
    • 5. Satterthwaite D. The impact on health urban environments. Environ. Urban 5(2), 87–111 (1993).
    • 6. Gadre A, Enbiale W, Andersen LK, Coates SJ. The effects of climate change on fungal diseases with cutaneous manifestations: a report from the International Society of Dermatology Climate Change Committee. J. Clim. Chang. Heal. 6, 100156 (2022).
    • 7. Sahni K, Singh S, Dogra S. Newer topical treatments in skin and nail dermatophyte infections. Indian Dermatol. Online J. 9(3), 149 (2018).
    • 8. Lim SMS, Sinnollareddy M, Sime FB. Challenges in antifungal therapy in diabetes mellitus. J. Clin. Med. 9(9), 1–9 (2020).
    • 9. Trovato L, Calvo M, De Pasquale R et al. Prevalence of onychomycosis in diabetic patients: a case-control study performed at University Hospital Policlinico in Catania. J. Fungi 8(9), 922 (2022).
    • 10. Khalifa A, Alreshidi IG, Alaradi LA, Alrashidi YM. Tinea unguium and tinea pedis and their correlation with diabetes mellitus in the general population in the Hail Region, Saudi Arabia: a cross-sectional study. Cureus 15(5), e40116 (2023).
    • 11. Kalra B, Kalra S. Vulvovaginitis and diabetes. J. Pak. Med. Assoc. 67(1), 143–145 (2017).
    • 12. Unnikrishnan R, Misra A. Infections and diabetes: risks and mitigation with reference to India. Diabetes Metab. Syndr. Clin. Res. Rev. 14(6), 1889–1894 (2020).
    • 13. Kennedy PGE, Mogensen TH, Cohrs RJ. Recent issues in varicella-zoster virus latency. Viruses 13(10), (2021).
    • 14. Zhu S, Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence 12(1), 2670–2702 (2021).
    • 15. Meza-Romero R, Navarrete-Dechent C, Downey C. Molluscum contagiosum: an update and review of new perspectives in etiology, diagnosis, and treatment. Clin. Cosmet. Investig. Dermatol. 12, 373–381 (2019).
    • 16. Pfeffermann K, Dörr M, Zirkel F, von Messling V. Morbillivirus pathogenesis and virus–host interactions. Adv. Virus Re. 100, 75–98 (2018).
    • 17. Bunge EM, Hoet B, Chen L et al. The changing epidemiology of human monkeypox – a potential threat? A systematic review. PLOS Negl. Trop. Dis. 16(2), e0010141 (2022).
    • 18. Nelson CW, Mirabello L. Human papillomavirus genomics: understanding carcinogenicity. Tumour Virus Res. 15, 200258 (2023).
    • 19. Pantry SN, Medveczky PG. Latency, integration, and reactivation of human herpesvirus-6. Viruses 9(7), 194 (2017).
    • 20. Rogo LD, Mokhtari-Azad T, Kabir MH, Rezaei F. Human parvovirus B19: a review. Acta Virol. 58(3), 199–213 (2014).
    • 21. Clark JM. New chemistries for the control of human head lice, Pediculus humanus capitis: a mini-review. Pestic. Biochem. Physiol. 181, 105013 (2022).
    • 22. Nardoni S, Mancianti F. Essential oils against Sarcoptes scabiei. Molecules 27(24), (2022).
    • 23. Khais Muri Laabusi A, Mohsan Rhadi M. Prevalence of Pediculus humunus capitis, Pediculus humanus corporis, and Pthirus pubis in Al-Kut, Iraq. Arch. Razi Inst. 77(1), 497–501 (2022).
    • 24. Mukai Y. Tunga penetrans in a sub-Saharan African desert traveler. Intern. Med. 59(19), 2441 (2020).
    • 25. Reinhardt K. Bedbugs. Curr. Biol. 29(21), R1118–R1119 (2019).
    • 26. Lee N, Hwang S, Lee Y et al. Synthetic biology tools for novel secondary metabolite discovery in streptomyces. J. Microbiol. Biotechnol. 29(5), 667–686 (2019). • Presents the biological potential and medical use of secondary metabolites.
    • 27. Amparo TR, Seibert JB, de Vieira PMA et al. Herbal medicines to the treatment of skin and soft tissue infections: advantages of the multi-targets action. Phytother. Res. 34(1), 94–103 (2020).
    • 28. Álvarez-Santos N, García-Bores AM, Barrera-Oviedo D et al. Secondary metabolites in wound healing: a review of their mechanisms of action. Stud. Nat. Prod. Chem. 78, 403–440 (2023).
    • 29. Ubillas R, Jolad SD, Bruening RC et al. SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago). Phytomedicine 1(2), 77–106 (1994).
    • 30. Phatale V, Vaiphei KK, Jha S et al. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Rel. 351, 361–380 (2022).
    • 31. Ray P, Singh S, Gupta S. Topical antimicrobial therapy: current status and challenges. Indian J. Med. Microbiol. 37(3), 299–308 (2019).
    • 32. Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Rel. 240, 77–92 (2016).
    • 33. Benson HAE, Grice JE, Mohammed Y et al. Topical and transdermal drug delivery: from simple potions to smart technologies. Curr. Drug Deliv. 16(5), 444–460 (2019).
    • 34. Ielciu I, Niculae M, Pall E et al. Antiproliferative and antimicrobial effects of Rosmarinus officinalis L. loaded liposomes. Molecules 27(13), (2022).
    • 35. Azzazy HMES, Fahmy SA, Mahdy NK et al. Chitosan-coated PLGA nanoparticles loaded with peganum harmala alkaloids with promising antibacterial and wound healing activities. Nanomaterials (Basel) 11(9), 2438 (2021).
    • 36. Hou T, Guo Y, Han W et al. Exploring the biomedical applications of biosynthesized silver nanoparticles using Perilla frutescens flavonoid extract: antibacterial, antioxidant, and cell toxicity properties against colon cancer cells. Molecules 28(17), 6431 (2023).
    • 37. Ben-Khalifa R, Gaspar FB, Pereira C et al. Essential oil and hydrophilic antibiotic co-encapsulation in multiple lipid nanoparticles: proof of concept and in vitro activity against pseudomonas aeruginosa. Antibiotics (Basel) 10(11), 1300 (2021).
    • 38. Tiwari N, Osorio-Blanco ER, Sonzogni A et al. Nanocarriers for skin applications: where do we stand? Angew. Chemie – Int. Ed. 61(3), e202107960 (2022).
    • 39. Raina N, Rani R, Thakur VK, Gupta M. New insights in topical drug delivery for skin disorders: from a nanotechnological perspective. ACS Omega 8(22), 19145–19167 (2023).
    • 40. Demain AL, Fang A. The natural functions of secondary metabolites. Adv. Biochem. Eng. Biotechnol. 69, 1–39 (2000).
    • 41. Ozyigit II, Dogan II, Ozyigit AH et al. Production of secondary metabolites using tissue culture-based biotechnological applications. Front. Plant Sci. 14, 1132555 (2023).
    • 42. Rodrigues V, Deusdado S. Meta-learning approach for bacteria classification and identification of informative genes of the Bacillus megaterium: tomato roots tissue interaction. 3 Biotech. 13(8), 271 (2023).
    • 43. Demain AL, Fang A. The natural functions of secondary metabolites. Adv. Biochem. Eng. Biotechnol. 69, 1–39 (2000).
    • 44. Divekar PA, Narayana S, Divekar BA et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 23(5), 2690 (2022). •• Presents applications of secondary metabolites.
    • 45. Stevens M, Ruxton GD. The key role of behaviour in animal camouflage. Biol. Rev. 94(1), 116–134 (2019).
    • 46. Choi JH, Jang AY, Lin S et al. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol. Med. Rep. 12(5), 6483–6490 (2015).
    • 47. Kourany-lefoll E, Pais M, Sévenet T et al. Phloeodictines A and B: new antibacterial and cytotoxic bicyclic amidinium salts from the new caledonian sponge, Phloeodictyon sp. J. Org. Chem. 57(14), 3832–3835 (1992).
    • 48. Huang L, Chen D, Wang L et al. Dermaseptin-PH: a novel peptide with antimicrobial and anticancer activities from the skin secretion of the south American orange-legged leaf frog, pithecopus (phyllomedusa) hypochondrialis. Molecules 22(10), 1805 (2017).
    • 49. Wang Y, Hong J, Liu X et al. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLOS ONE 3(9), e3217 (2008).
    • 50. Kubota T, Ichiro KS, Kobayashi J. The manzamine alkaloids. In: Alkaloids: Chemistry and Biology. Cordell GA (Eds). Academic Press, CA, USA (2020).
    • 51. Cariello L, Zanetti L, Cuomo V, Vanzanella F. Antimicrobial activity of avarol, a sesquiterpenoid hydroquinone from the marine sponge, dysidea avara. Comp. Biochem. Physiol. Part B Biochem. 71(2), 281–283 (1982).
    • 52. Cole AM, Weis P, Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272(18), 12008–12013 (1997).
    • 53. Zhang M, Wei W, Sun Y et al. Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts. Arch. Oral Biol. 70, 79–87 (2016).
    • 54. Jung HJ, Park Y, Sung WS et al. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim. Biophys. Acta Biomembr. 1768(6), 1400–1405 (2007).
    • 55. Aldawsari HM, Badr-Eldin SM, Labib GS, El-Kamel AH. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. Int. J. Nanomed. 10, 893–902 (2015).
    • 56. Ammar B, Périanin A, Mor A et al. Dermaseptin, a peptide antibiotic, stimulates microbicidal activities of polymorphonuclear leukocytes. Biochem. Biophys Res. Commun. 247(3), 870–875 (1998).
    • 57. Navon-Venezia S, Feder R, Gaidukov L et al. Antibacterial properties of dermaseptin S4 derivatives with in vivo activity. Antimicrob. Agents Chemother. 46(3), 689–694 (2002).
    • 58. Zhu H, Ding X, Li W et al. Discovery of two skin-derived dermaseptins and design of a TAT-fusion analogue with broad-spectrum antimicrobial activity and low cytotoxicity on healthy cells. Peer J. 6, e5635 (2018).
    • 59. Torres JP, Schmidt EW. The biosynthetic diversity of the animal world. J. Biol. Chem. 294(46), 17684–17692 (2019).
    • 60. Ruiz B, Chávez A, Forero A et al. Production of microbial secondary metabolites: regulation by the carbon source. Crit. Rev. Microbiol. 36(2), 146–167 (2010).
    • 61. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA. Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ. Sci. Pollut. Res. 25(6), 5164–5180 (2018). •• Demonstrates the sources of secondary metabolites from microorganisms.
    • 62. Kahlon N, Sharma A, Dogra H, Singh R. Quorum-sensing effector pyocyanin but not farnesol & acyl homoserine lactone exhibit antibacterial activity. Indian J. Med. Res. 155(1), 73–78 (2022).
    • 63. Majeed HZ. Antimicrobial activity of Micrococcus luteus cartenoid pigment. Al-Mustansiriyah J. Sci. 28(1), 64–69 (2017).
    • 64. Selim MSM, Abdelhamid SA, Mohamed SS. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 19(1), 72 (2021).
    • 65. Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A et al. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Polish J. Microbiol. 67(3), 259–272 (2018).
    • 66. Din FU, Aman W, Ullah I et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291–7309 (2017).
    • 67. Reddy GKK, Padmavathi AR, Nancharaiah YV. Fungal infections: pathogenesis, antifungals and alternate treatment approaches. Curr. Res. Microb. Sci. 3, 100137 (2022).
    • 68. Bonifácio BV, da Silva PB, Aparecido dos Santos Ramos M et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomed. 9(1), 1–15 (2013).
    • 69. Esposito E, Nastruzzi C, Sguizzato M, Cortesi R. Nanomedicines to treat skin pathologies with natural molecules. Curr. Pharm. Des. 25(21), 2323–2337 (2019).
    • 70. Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: the importance of nano-liposomes. Pharmaceutics 14(12), 2808 (2022).
    • 71. Turuvekere Vittala Murthy N, Agrahari V, Chauhan H. Polyphenols against infectious diseases: controlled release nano-formulations. Eur. J. Pharm. Biopharm. 161, 66–79 (2021).
    • 72. Souto EB, Cano A, Martins-Gomes C et al. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 9(4), 158 (2022).
    • 73. Zhu W, Yu A, Wang W et al. Formulation design of microemulsion for dermal delivery of penciclovir. Int. J. Pharm. 360(1–2), 184–190 (2008).
    • 74. Wichterle O, Lím D. Hydrophilic gels for biological use. Nature 185(4706), 117–118 (1960).
    • 75. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015).
    • 76. Almoshari YH. Novel hydrogels for topical applications: an updated comprehensive review based on source. Gels 8(3), 174 (2022).
    • 77. Mardhiah Adib Z, Ghanbarzadeh S, Kouhsoltani M et al. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: a histological study. Adv. Pharm. Bull. 6(1), 31–36 (2016).
    • 78. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 64(Suppl.), 83–101 (2012).
    • 79. Ramzan M, Gourion-Arsiquaud S, Hussain A et al. In vitro release, ex vivo penetration, and in vivo dermatokinetics of ketoconazole-loaded solid lipid nanoparticles for topical delivery. Drug Deliv. Transl. Res. 12(7), 1659–1683 (2022).
    • 80. Baveloni FG, Riccio BVF, Di Filippo LD et al. Nanotechnology-based drug delivery systems as potential for skin application: a review. Curr. Med. Chem. 28(16), 3216–3248 (2020).
    • 81. Madawi EA, Al Jayoush AR, Rawas-Qalaji M et al. Polymeric nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin tissues for treatment of topical skin diseases. Pharmaceutics 15(2), 657 (2023).
    • 82. Iqubal MK, Saleem S, Iqubal A et al. Natural, synthetic and their combinatorial nanocarriers based drug delivery system in the treatment paradigm for wound healing via dermal targeting. Curr. Pharm. Des. 26(36), 4551–4568 (2020).
    • 83. Pal N, Agarwal M, Gupta R. Green synthesis of guar gum/Ag nanoparticles and their role in peel-off gel for enhanced antibacterial efficiency and optimization using RSM. Int. J. Biol. Macromol. 221, 665–678 (2022).
    • 84. Sonia SS, Linda Jeeva Kumari H, Ruckmani RK, Sivakumar SM. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: a potent nanocosmeceutical application. Mater. Sci. Eng. C. 79, 581–589 (2017).
    • 85. Usach I, Margarucci E, Manca ML et al. Comparison between citral and pompia essential oil loaded in phospholipid vesicles for the treatment of skin and mucosal infections. Nanomaterials 10(2), 286 (2020).
    • 86. Jummes B, Sganzerla WG, da Rosa CG et al. Antioxidant and antimicrobial poly-ϵ-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil. Biocatal. Agric. Biotechnol. 23, 101499 (2020).
    • 87. Mandal AK, Sahoo A, Dwivedi K et al. Potential therapeutic application of biophenols-plants secondary metabolites in rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 63(27), 8900–8918 (2023).
    • 88. Akbar MU, Zia KM, Nazir A et al. Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS Pharm. Sci. Tech. 19(6), 2719–2739 (2018).
    • 89. George D, Maheswari PU, Begum KMMS. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int. J. Biol. Macromol. 132, 784–794 (2019).
    • 90. Anwar A, Masri A, Rao K et al. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci. Rep. 9(1), 3122 (2019).
    • 91. Narayanan M, Hussain F, Ahamed J et al. Green synthesizes and characterization of copper-oxide nanoparticles by Thespesia populnea against skin-infection causing microbes. J. King Saud Univ. Sci. 34(3), 101885 (2022).
    • 92. Karthikeyan A, Senthil N, Min T. Nanocurcumin: a promising candidate for therapeutic applications. Front. Pharmacol. 11, 487 (2020).
    • 93. Comotto M, Saghazadeh S, Bagherifard S et al. Breathable hydrogel dressings containing natural antioxidants for management of skin disorders. J. Biomater. Appl. 33(9), 1265–1276 (2019).
    • 94. Pinho E, Henriques M, Soares G. Caffeic acid loading wound dressing: physicochemical and biological characterization. Ther. Deliv. 5(10), 1063–1075 (2014).
    • 95. Umadevi A, Kumari C, Kumar PA et al. Development and evaluation of polyherbal gel for antifungal activity. Int. J. Curr. Pharm. Res. 10(5), 40–43 (2018).
    • 96. Sasivimolphan P, Lipipun V, Ritthidej G et al. Microemulsion-based oxyresveratrol for topical treatment of herpes simplex virus (HSV) infection: physicochemical properties and efficacy in cutaneous HSV-1 infection in mice. AAPS Pharm. Sci. Tech. 13(4), 1266–1275 (2012).
    • 97. Rahman M, Singh JG, Afzal O et al. Preparation, characterization, and evaluation of curcumin-graphene oxide complex-loaded liposomes against Staphylococcus aureus in topical disease. ACS Omega 7(48), 43499–43509 (2022). •• Presents the application of curcumin as an antimicrobial application.
    • 98. Hazzah HA, Farid RM, Nasra MMA et al. Gelucire-based nanoparticles for curcumin targeting to oral mucosa: preparation, characterization, and antimicrobial activity assessment. J. Pharm. Sci. 104(11), 3913–3924 (2015).
    • 99. Mohamed NH, Ismail MA, Abdel-Mageed WM, Shoreit AAM. Antimicrobial activity of green silver nanoparticles from endophytic fungi isolated from Calotropis procera (Ait) latex. Microbiol. (United Kingdom) 165(9), 967–975 (2019).
    • 100. Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet 361–372 (2012).
    • 101. Leelaudomlipi P, Intawong S, Supakdamrongkul P, Sobharaksha P. Preparation of nanostructured lipid carriers (Nlcs) loading violacein extract for anti-acne products. Key Eng. Mater. 129–136 (2021).
    • 102. Gonçalves T, Vasconcelos U. Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules 26(4), 927 (2021).
    • 103. Da Silva JEG, Do Amaral IPG, de Kretzschmar EAM, Vasconcelos U. Antifungal coating based on pyocyanin nanoparticles (Np-Pyo). Eur. J. Biol. Biotechnol. 3(2), 30–37 (2022).
    • 104. Reis CP, Martinho N, Rosado C et al. Design of polymeric nanoparticles and its applications as drug delivery systems for acne treatment. Drug Dev. Ind. Pharm. 40(3), 409–417 (2014).
    • 105. Wang Y, Li Z, Xu M et al. Signal molecules regulate the synthesis of secondary metabolites in the interaction between endophytes and medicinal plants. Processes 11(3), 849 (2023).
    • 106. Lin M, Guo JT. New insights into protein-DNA binding specificity from hydrogen bond based comparative study. Nucleic Acids Res. 47(21), 11103–11113 (2019).
    • 107. Divekar PA, Narayana S, Divekar BA et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 23(5), 2690 (2022).
    • 108. Wink M. Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids Chem. Biol. 64, 1–47 (2007).
    • 109. Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10), 7313–7352 (2010).
    • 110. Parvez MK, Rishi V. Herb-drug interactions and hepatotoxicity. Curr. Drug Metab. 20(4), 275–282 (2019).
    • 111. Pignatello R, Musumeci T, Basile L et al. Biomembrane models and drug-biomembrane interaction studies: involvement in drug design and development. J. Pharm. Bioallied Sci. 3(1), 4–14 (2011).
    • 112. Naylor MR, Ly AM, Handford MJ et al. Lipophilic permeability efficiency reconciles the opposing roles of lipophilicity in membrane permeability and aqueous solubility. J. Med. Chem. 61(24), 11169–11182 (2018).
    • 113. Huchzermeyer B, Menghani E, Khardia P, Shilu A. Metabolic pathway of natural antioxidants, antioxidant enzymes and ROS providence. Antioxidants (Basel) 11(4), 761 (2022).
    • 114. Zhao Y, Tian Y, Cui Y et al. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. J. Am. Chem. Soc. 132(35), 12349–12356 (2010).
    • 115. Lee H, Lee DG. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids Surf. B Biointerfaces 167, 1–7 (2018).
    • 116. Fan C, Moews PC, Walsh CT, Knox JR. Vancomycin resistance: structure of D-alanine: D-alanine ligase at 2.3 Å resolution. Science (80) 266(5184), 439–443 (1994).
    • 117. Hayden SC, Zhao G, Saha K et al. Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J. Am. Chem. Soc. 134(16), 6920–6923 (2012).
    • 118. Engstrom AM, Faase RA, Marquart GW et al. Size-dependent interactions of lipid-coated gold nanoparticles: developing a better mechanistic understanding through model cell membranes and in vivo toxicity. Int. J. Nanomed. 15, 4091–4104 (2020).
    • 119. Li Q, Mahendra S, Lyon DY et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42(18), 4591–4602 (2008).
    • 120. Khan FU, Chen Y, Khan NU et al. Visible light inactivation of E. coli, cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb. Pathog. 107, 419–424 (2017).
    • 121. Jazmín Silvero MC, Rocca DM, Artur de la Villarmois E et al. Selective photoinduced antibacterial activity of amoxicillin-coated gold nanoparticles: from one-step synthesis to in vivo cytocompatibility. ACS Omega 3(1), 1220–1230 (2018).
    • 122. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 385(1–2), 113–142 (2010).
    • 123. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 172(12), 1487–1490 (2005).
    • 124. Nel AE, Mädler L, Velegol D et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009).
    • 125. Lademann J, Richter H, Teichmann A et al. Nanoparticles – an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 66(2), 159–164 (2007).
    • 126. De Stefano D, Carnuccio R, Maiuri MC. Nanomaterials toxicity and cell death modalities. J. Drug Deliv. 2012, 1–14 (2012).
    • 127. Labouta HI, el-Khordagui LK, Kraus T, Schneider M. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale 3(12), 4989–4999 (2011).
    • 128. Wang S, Lu W, Tovmachenko O et al. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 463(1–3), 145–149 (2008).
    • 129. Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 33(5), 1607–1617 (2012).
    • 130. Prasath S, Palaniappan K. Is using nanosilver mattresses/pillows safe? A review of potential health implications of silver nanoparticles on human health. Environ. Geochem. Health 41(5), 2295–2313 (2019).
    • 131. Labouta HI, Liu DC, Lin LL et al. Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res. 28(11), 2931–2944 (2011).
    • 132. Edlich A, Gerecke C, Giulbudagian M et al. Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin. Eur. J. Pharm. Biopharm. 116, 155–163 (2017).
    • 133. Mangalathillam S, Rejinold NS, Nair A et al. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale 4(1), 239–250 (2012).
    • 134. Zellner R. Biological responses to nanoscale particles. Beilstein J. Nanotechnol. 6(1), 380–382 (2015).
    • 135. Lu W, Senapati D, Wang S et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem. Phys Lett. 487(1–3), 92–96 (2010).
    • 136. Schaudinn C, Dittmann C, Jurisch J et al. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin. PLOS ONE 12(11), e0186946 (2017).