We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Platelet-derived extracellular vesicles: a new-generation nanostructured tool for chronic wound healing

    Abdolreza Esmaeilzadeh

    *Author for correspondence:

    E-mail Address: a46reza@zums.ac.ir

    Department of Immunology, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran

    Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran

    ,
    Pegah Moharrami Yeganeh

    School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran

    ,
    Mahdis Nazari

    School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran

    &
    Kimia Esmaeilzadeh

    Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran

    Published Online:https://doi.org/10.2217/nnm-2023-0344

    Chronic nonhealing wounds pose a serious challenge to regaining skin function and integrity. Platelet-derived extracellular vesicles (PEVs) are nanostructured particles with the potential to promote wound healing since they can enhance neovascularization and cell migration and reduce inflammation and scarring. This work provides an innovative overview of the technical laboratory issues in PEV production, PEVs' role in chronic wound healing and the benefits and challenges in its clinical translation. The article also explores the challenges of proper sourcing, extraction techniques and storage conditions, and discusses the necessity of further evaluations and combinational therapeutics, including dressing biomaterials, M2-derived exosomes, mesenchymal stem cells-derived extracellular vesicles and microneedle technology, to boost their therapeutic efficacy as advanced strategies for wound healing.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Gallo RL. Human skin is the largest epithelial surface for interaction with microbes. J. Invest. Dermatol. 137(6), 1213–1214 (2017).
    • 2. Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int. J. Mol. Sci. 17(12), 2085 (2016).
    • 3. Yeganeh PM, Tahmasebi S, Esmaeilzadeh A. Cellular and biological factors involved in healing wounds and burns and treatment options in tissue engineering. Regen. Med. 17(6), 401–418 (2022).
    • 4. Broughton G 2nd, Janis JE, Attinger CE. Wound healing: an overview. Plast. Reconstr. Surg. 117(Suppl. 7), 1e-S–32e-S (2006).
    • 5. Martinengo L, Olsson M, Bajpai R et al. Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Ann. Epidemiol. 29, 8–15 (2019).
    • 6. Farahani M, Shafiee A. Wound healing: from passive to smart dressings. Adv. Healthc. Mater. 10(16), e2100477 (2021).
    • 7. Luze H, Nischwitz SP, Smolle C, Zrim R, Kamolz LP. The use of acellular fish skin grafts in burn wound management – a systematic review. Medicina (Kaunas) 58(7), 912 (2022).
    • 8. Okur ME, Karantas ID, Şenyiğit Z, Üstündağ Okur N, Siafaka PI. Recent trends on wound management: new therapeutic choices based on polymeric carriers. Asian J. Pharm. Sci. 15(6), 661–684 (2020).
    • 9. Bowers S, Franco E. Chronic wounds: evaluation and management. Am. Fam. Physician 101(3), 159–166 (2020).
    • 10. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 16(5), 585–601 (2008).
    • 11. Daneshi N, Bahmaie N, Esmaeilzadeh A. Cell-free treatments: a new generation of targeted therapies for treatment of ischemic heart diseases. Cell J. (Yakhteh) 24(7), 353 (2022).
    • 12. Zare R, Mohtasham N, Ghazi N et al. Evaluation of correlation between transcription factors and IL-17 in oral and cutaneous lichen planus lesions and leukocytes. Cytokine 148, 155696 (2021).
    • 13. Khosh E, Esmaeilzadeh A. Advances of mesenchymal stem cells-derived exosome therapy for ischemic stroke. Int. J. Stroke 15(1), 642–643 (2020).
    • 14. Li S, Xing F, Yan T, Zhang S, Chen F. The efficiency and safety of platelet-rich plasma dressing in the treatment of chronic wounds: a systematic review and meta-analysis of randomized controlled trials. J. Pers. Med. 13(3), 430 (2023).
    • 15. Xu K, Deng S, Zhu Y et al. Platelet rich plasma loaded multifunctional hydrogel accelerates diabetic wound healing via regulating the continuously abnormal microenvironments. Adv. Healthc. Mater. 12(28), 2301370 (2023).
    • 16. Ding N, Fu X, Gui Q et al. Biomimetic structure hydrogel loaded with long-term storage platelet-rich plasma in diabetic wound repair. Adv. Healthc. Mater. 2303192 doi: 10.1002/adhm.202303192 (2023).
    • 17. Re F, Sartore L, Moulisova V et al. 3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. J. Tissue Eng. 10, 2041731419845852 (2019).
    • 18. Puhm F, Boilard E, Machlus KR. Platelet extracellular vesicles: beyond the blood. Arterioscler. Thromb. Vasc. Biol. 41(1), 87–96 (2021).
    • 19. Sousa P, Lopes B, Sousa AC et al. Advancements and insights in exosome-based therapies for wound healing: a comprehensive systematic review (2018–June 2023). Biomedicines 11(8), 2099 (2023).
    • 20. Lazar S, Goldfinger LE. Platelets and extracellular vesicles and their cross talk with cancer. Blood 137(23), 3192–3200 (2021).
    • 21. Antich-Rosselló M, Forteza-Genestra MA, Monjo M, Ramis JM. Platelet-derived extracellular vesicles for regenerative medicine. Int. J. Mol. Sci. 22(16), 8580 (2021). • Highlights advances in the therapeutic use of platelet-derived extracellular vesicles in the field of regenerative medicine.
    • 22. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol. Rev. 99(1), 665–706 (2019).
    • 23. Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 29(3), 153–162 (2015).
    • 24. Sadeghi A, Esmaeilzadeh A, Lakzaei T, Mazloomzadeh S, Karimimoghaddam A, Ammari A. A within-person, between-knee comparison of intra-articular platelet-rich plasma versus placebo injection in knees osteoarthritis: a randomized, double-blind comparison. (2021).
    • 25. Han T, Tang H, Lin C et al. Extracellular traps and the role in thrombosis. Front. Cardiovasc. Med. 9, 951670 (2022).
    • 26. Jiao Y, Li W, Wang W et al. Platelet-derived exosomes promote neutrophil extracellular trap formation during septic shock. Crit. Care 24(1), 380 (2020).
    • 27. Wu J, Piao Y, Liu Q, Yang X. Platelet-rich plasma-derived extracellular vesicles: a superior alternative in regenerative medicine? Cell Prolif. 54(12), e13123 (2021). • Reviews potential properties of plasma-derived extracellular vesicles as a superior alternative to platelet-rich plasma-based therapies in regenerative medicine.
    • 28. Dai Z, Zhao T, Song N et al. Platelets and platelet extracellular vesicles in drug delivery therapy: a review of the current status and future prospects. Front. Pharmacol. 13, 1026386 (2022).
    • 29. Hazrati A, Soudi S, Malekpour K et al. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications. Biomarker Res. 10(1), 30 (2022).
    • 30. Kose O, Botsali A, Caliskan E. Role of exosomes in skin diseases. J. Cosmet. Dermatol. 21(8), 3219–3225 (2022).
    • 31. Goetzl EJ, Schwartz JB, Mustapic M et al. Altered cargo proteins of human plasma endothelial cell–derived exosomes in atherosclerotic cerebrovascular disease. FASEB J. 31(8), 3689 (2017).
    • 32. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease. J. Neurovirol. 25, 702–709 (2019).
    • 33. Singla DK. Stem cells and exosomes in cardiac repair. Curr. Opin. Pharmacol. 27, 19–23 (2016).
    • 34. Guo SC, Tao SC, Yin WJ, Qi X, Yuan T, Zhang CQ. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics 7(1), 81–96 (2017). • Provides evidence on the angiogenic and remodeling properties of platelet-rich plasma exosomes in chronic wounds.
    • 35. Fonseka P, Marzan AL, Mathivanan S. Introduction to the community of extracellular vesicles. New Front. Extracell. Vesicles 97, 3–18 (2021).
    • 36. Nallakumarasamy A, Jeyaraman M, Maffulli N et al. Mesenchymal stromal cell-derived extracellular vesicles in wound healing. Life 12(11), 1733 (2022).
    • 37. Ali NB, Abdull Razis AF, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic applications of mammal and plant-derived extracellular vesicles: latest findings, current technologies, and prospects. Molecules 27(12), 3941 (2022).
    • 38. Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv. Sci. (Weinheim) 6(20), 1900513 (2019). • Highlights the necessity of macrophage polarization in wound healing assisted by exosomes.
    • 39. Yang XX, Sun C, Wang L, Guo XL. New insight into isolation, identification techniques and medical applications of exosomes. J. Control. Rel. 308, 119–129 (2019).
    • 40. Daneshi N, Esmaeilzadeh A, Bahmaie N. 47D11 antibody-engineered exosomes for targeted delivery of remdesivir in patients with COVID-19: dream or principle? (a critical editorial study). Eurasian J. Med. 54(3), 310–312 (2022).
    • 41. Mohammadi V, Maleki AJ, Nazari M et al. Chimeric antigen receptor (CAR)-based cell therapy for type 1 diabetes mellitus (T1DM); current progress and future approaches. Stem Cell Rev. Rep. 1–16 doi: 10.1007/s12015-023-10668-1 (2023) (Epub ahead of print).
    • 42. Eustes AS, Dayal S. The role of platelet-derived extracellular vesicles in immune-mediated thrombosis. Int. J. Mol. Sci. 23(14), 7837 (2022).
    • 43. Antich-Rosselló M, Forteza-Genestra MA, Ronold HJ et al. Platelet-derived extracellular vesicles formulated with hyaluronic acid gels for application at the bone-implant interface: an animal study. J. Orthop. Translat. 40, 72–79 (2023).
    • 44. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J. Cutan. Aesthet. Surg. 7(4), 189 (2014).
    • 45. Meliciano AEL. Empowering the therapeutic potential of clinically expired platelet concentrates: a new source of extracellular vesicles. (2022). http://hdl.handle.net/10362/141380
    • 46. Alves R, Grimalt R. A review of platelet-rich plasma: history, biology, mechanism of action, and classification. Skin Appendage Disord. 4(1), 18–24 (2018).
    • 47. Cole BJ, Seroyer ST, Filardo G, Bajaj S, Fortier LA. Platelet-rich plasma: where are we now and where are we going? Sports Health 2(3), 203–210 (2010).
    • 48. Ostermeier B, Soriano-Sarabia N, Maggirwar SB. Platelet-released factors: their role in viral disease and applications for extracellular vesicle (EV) therapy. Int. J. Mol. Sci. 23(4), 2321 (2022).
    • 49. Spakova T, Janockova J, Rosocha J. Characterization and therapeutic use of extracellular vesicles derived from platelets. Int. J. Mol. Sci. 22(18), 9701 (2021).
    • 50. Taus F, Meneguzzi A, Castelli M, Minuz P. Platelet-derived extracellular vesicles as target of antiplatelet agents. What is the evidence? Front. Pharmacol. 10, 1256 (2019).
    • 51. Saumell-Esnaola M, Delgado D, García Del Caño G et al. Isolation of platelet-derived exosomes from human platelet-rich plasma: biochemical and morphological characterization. Int. J. Mol. Sci. 23(5), 2861 (2022). • Sheds light on the molecular composition of platelet-derived exomes and proposes a proper method for isolating highly pure platelet exosomes.
    • 52. Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake. Int. J. Mol. Sci. 24(2), 1337 (2023).
    • 53. Ali NB, Abdull Razis AF, Ooi J, Chan KW, Ismail N, Foo JB. Theragnostic applications of mammal and plant-derived extracellular vesicles: latest findings, current technologies, and prospects. Molecules 27(12), 3941 (2022).
    • 54. Li M, Li R, Yang S et al. Exosomes derived from bone marrow mesenchymal stem cells prevent acidic pH-induced damage in human nucleus pulposus cells. Med. Sci. Monit. 26, e922928 (2020).
    • 55. Xing H, Zhang Z, Mao Q et al. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J. Nanobiotechnol. 19(1), 264 (2021).
    • 56. Liao Z, Luo R, Li G et al. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics 9(14), 4084–4100 (2019).
    • 57. Lu J, Yang X, He C et al. Rejuvenation of tendon stem/progenitor cells for functional tendon regeneration through platelet-derived exosomes loaded with recombinant Yap1. Acta Biomater. 161, 80–99 (2023).
    • 58. Anitua E, Troya M, Falcon-Pérez JM, López-Sarrio S, González E, Alkhraisat MH. Advances in platelet rich plasma-derived extracellular vesicles for regenerative medicine: a systematic-narrative review. Int. J. Mol. Sci. 24(17), 13043 (2023).
    • 59. Zaldivia MTK, Mcfadyen JD, Lim B, Wang X, Peter K. Platelet-derived microvesicles in cardiovascular diseases. Front. Cardiovasc. Med. 4, 74 (2017).
    • 60. Wang W, Deng Z, Liu G et al. Platelet-derived extracellular vesicles promote the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes via CXCR2 signaling. Exp. Ther. Med. 22(4), 1120 (2021).
    • 61. Narauskaitė D, Vydmantaitė G, Rusteikaitė J et al. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel) 14(8), 811 (2021).
    • 62. Zhu Z, Sun S, Jiang T, Zhang L, Chen M, Chen S. A double-edged sword of platelet-derived extracellular vesicles in tissues, injury or repair: the current research overview. Tissue Cell 82, 102066 (2023). • Highlights the probable dual effects of platelet-derived extracellular vesicles, which can either promote tissue repair or deteriorate tissue damage.
    • 63. Xu N, Wang L, Guan J et al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int. J. Biol. Macromol. 117, 102–107 (2018).
    • 64. Lovisolo F, Carton F, Gino S, Migliario M, Renò F. Platelet rich plasma-derived microvesicles increased in vitro wound healing. Eur. Rev. Med. Pharmacol. Sci. 24(18), 9658–9664 (2020).
    • 65. Mause SF, Ritzel E, Liehn EA et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 122(5), 495–506 (2010).
    • 66. Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br. J. Haematol. 124(3), 376–384 (2004).
    • 67. Hao PC, Burnouf T, Chiang CW et al. Enhanced diabetic wound healing using platelet-derived extracellular vesicles and reduced graphene oxide in polymer-coordinated hydrogels. J. Nanobiotechnol. 21(1), 318 (2023).
    • 68. Lopez E, Srivastava AK, Burchfield J et al. Platelet-derived-extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci. Rep. 9(1), 17676 (2019).
    • 69. Lee JH, Jung H, Song J, Choi ES, You G, Mok H. Activated platelet-derived vesicles for efficient hemostatic activity. Macromol. Biosci. 20(3), e1900338 (2020).
    • 70. Miyazawa B, Trivedi A, Togarrati PP et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J. Trauma Acute Care Surg. 86(6), 931–942 (2019).
    • 71. Effect of plasma derived exosomes on intractable cutaneous wound healing: prospective trial. https://clinicaltrials.gov/study/NCT02565264#study-record-dates
    • 72. Sang Y, Roest M, De Laat B, De Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev. 46, 100733 (2021).
    • 73. Kerris EWJ, Hoptay C, Calderon T, Freishtat RJ. Platelets and platelet extracellular vesicles in hemostasis and sepsis. J. Investig. Med. 68(4), 813–820 (2020).
    • 74. Sinauridze EI, Kireev DA, Popenko NY et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 97(3), 425–434 (2007).
    • 75. Cai Z, Feng J, Dong N, Zhou P, Huang Y, Zhang H. Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy. Platelets 34(1), 2242708 (2023).
    • 76. Eustes AS, Dayal S. The role of platelet-derived extracellular vesicles in immune-mediated thrombosis. Int. J. Mol. Sci. 23(14), 7837 (2022).
    • 77. Dyer MR, Alexander W, Hassoune A et al. Platelet-derived extracellular vesicles released after trauma promote hemostasis and contribute to DVT in mice. J. Thromb. Haemost. 17(10), 1733–1745 (2019).
    • 78. Guervilly C, Bonifay A, Burtey S et al. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv. 5(3), 628–634 (2021).
    • 79. Puhm F, Allaeys I, Lacasse E et al. Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Adv. 6(12), 3593–3605 (2022).
    • 80. Zifkos K, Dubois C, Schäfer K. Extracellular vesicles and thrombosis: update on the clinical and experimental evidence. Int. J. Mol. Sci. 22(14), 7837 (2021).
    • 81. Barry OP, Pratico D, Lawson JA, Fitzgerald GA. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J. Clin. Invest. 99(9), 2118–2127 (1997).
    • 82. Ferreira PM, Bozbas E, Tannetta SD et al. Mode of induction of platelet-derived extracellular vesicles is a critical determinant of their phenotype and function. Sci. Rep. 10(1), 18061 (2020).
    • 83. Patel H, Pundkar A, Shrivastava S, Chandanwale R, Jaiswal AM. A comprehensive review on platelet-rich plasma activation: a key player in accelerating skin wound healing. Cureus 15(11), e48943 (2023).
    • 84. Suades R, Padró T, Vilahur G, Badimon L. Platelet-released extracellular vesicles: the effects of thrombin activation. Cell. Mol. Life Sci. 79(3), 190 (2022).
    • 85. Pluchart C, Barbe C, Poitevin G, Audonnet S, Nguyen P. A pilot study of procoagulant platelet extracellular vesicles and P-selectin increase during induction treatment in acute lymphoblastic leukaemia paediatric patients: two new biomarkers of thrombogenic risk? J. Thromb. Thrombolysis 51(3), 711–719 (2021).
    • 86. Cavallo C, Roffi A, Grigolo B et al. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed. Res. Int. 2016, 6591717 (2016).
    • 87. Kunder V, Sharma KC, Rizvi Z, Soubelet R, Ducharme M. The use of platelet-rich plasma in the treatment of diabetic foot ulcers: a scoping review. Cureus 15(8), e43452 (2023).
    • 88. Ma Q, Fan Q, Han X et al. Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. J. Control. Rel. 329, 445–453 (2021).
    • 89. Ruiter DJ, Schlingemann RO, Westphal JR, Denijn M, Rietveld FJ, De Waal RM. Angiogenesis in wound healing and tumor metastasis. Behring Inst. Mitt. (92), 258–272 (1993).
    • 90. Martin RF. Wound healing. Surg. Clin. North Am. 100(4), ix–xi (2020).
    • 91. Wallace HA, Basehore BM, Zito PM. Wound healing phases. In: StatPearls. (Eds). StatPearls Publishing, FL, USA (2023).
    • 92. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 37(5), 1528–1542 (2009).
    • 93. Gentile P, Garcovich S. Systematic review – the potential implications of different platelet-rich plasma (PRP) concentrations in regenerative medicine for tissue repair. Int. J. Mol. Sci. 21(16), 5702 (2020).
    • 94. Alinezhad V, Esmaeilzadeh K, Bagheri H et al. Engineering a platelet-rich plasma-based multifunctional injectable hydrogel with photothermal, antibacterial, and antioxidant properties for skin regeneration. Biomater. Sci. 11(17), 5872–5892 (2023).
    • 95. Li Y, Li D, You L et al. dCas9-based PDGFR-β activation ADSCs accelerate wound healing in diabetic mice through angiogenesis and ECM remodeling. Int. J. Mol. Sci. 24(6), 5949 (2023).
    • 96. Hayon Y, Dashevsky O, Shai E, Brill A, Varon D, Leker RR. Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia. Curr. Neurovasc. Res. 9(3), 185–192 (2012).
    • 97. Roedersheimer M, Nijmeh H, Burns N, Sidiakova AA, Stenmark KR, Gerasimovskaya EV. Complementary effects of extracellular nucleotides and platelet-derived extracts on angiogenesis of vasa vasorum endothelial cells in vitro and subcutaneous Matrigel plugs in vivo. Vasc. Cell 3(1), 4 (2011).
    • 98. Shan LY, Li JZ, Zu LY et al. Platelet-derived microparticles are implicated in remote ischemia conditioning in a rat model of cerebral infarction. CNS Neurosci. Ther. 19(12), 917–925 (2013).
    • 99. Sun Y, Liu XL, Zhang D et al. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr. Vasc. Pharmacol. 17(4), 379–387 (2019).
    • 100. Bordin A, Chirivì M, Pagano F et al. Human platelet lysate-derived extracellular vesicles enhance angiogenesis through miR-126. Cell Prolif. 55(11), e13312 (2022).
    • 101. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 49(1), 1–15 (2014).
    • 102. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12), 1097–1105 (2011).
    • 103. Pandey AK, Singhi EK, Arroyo JP et al. Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension 71(2), e1–e8 (2018).
    • 104. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl. 3), 4–10 (2005).
    • 105. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal. 10(4), 347–354 (2016).
    • 106. Lyttle BD, Vaughn AE, Bardill JR et al. Effects of microRNAs on angiogenesis in diabetic wounds. Front. Med. (Lausanne) 10, 1140979 (2023).
    • 107. Song M, Finley SD. Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Syst. Biol. 12(1), 145 (2018).
    • 108. Elçin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif. Organs 25(7), 558–565 (2001).
    • 109. Chereddy KK, Lopes A, Koussoroplis S et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine 11(8), 1975–1984 (2015).
    • 110. Zhu Y, Wang Y, Jia Y, Xu J, Chai Y. Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 27(4), 324–334 (2019).
    • 111. Simons M, Ware JA. Therapeutic angiogenesis in cardiovascular disease. Nat. Rev. Drug Discov. 2(11), 863–871 (2003).
    • 112. Carmeliet P, Moons L, Luttun A et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7(5), 575–583 (2001).
    • 113. Cianfarani F, Zambruno G, Brogelli L et al. Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. Am. J. Pathol. 169(4), 1167–1182 (2006).
    • 114. Fang RC, Galiano RD. A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics 2(1), 1–12 (2008).
    • 115. Wieman TJ. Clinical efficacy of becaplermin (rhPDGF-BB) gel. Becaplermin Gel Studies Group. Am. J. Surg. 176(2A Suppl.), 74S–79S (1998).
    • 116. Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen. 7(5), 335–346 (1999).
    • 117. Torreggiani E, Perut F, Roncuzzi L, Zini N, Baglìo SR, Baldini N. Exosomes: novel effectors of human platelet lysate activity. Eur. Cell Mater. 28, 137–151 (2014).
    • 118. Tao SC, Yuan T, Rui BY, Zhu ZZ, Guo SC, Zhang CQ. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics 7(3), 733–750 (2017).
    • 119. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 146, 97–125 (2019).
    • 120. Xie Z, Paras CB, Weng H et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 9(12), 9351–9359 (2013).
    • 121. Sun J, Zhao H, Shen C et al. Tideglusib promotes wound healing in aged skin by activating PI3K/Akt pathway. Stem Cell Res. Ther. 13(1), 269 (2022).
    • 122. Schultz G, Rotatori DS, Clark W. EGF and TGF-alpha in wound healing and repair. J. Cell. Biochem. 45(4), 346–352 (1991).
    • 123. Hong JP, Jung HD, Kim YW. Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers. Ann. Plast. Surg. 56(4), 394–398 (2006).
    • 124. Yang Q, Zhang Y, Yin H, Lu Y. Topical recombinant human epidermal growth factor for diabetic foot ulcers: a meta-analysis of randomized controlled clinical trials. Ann. Vasc. Surg. 62, 442–451 (2020).
    • 125. Viswanathan V, Juttada U, Babu M. Efficacy of recombinant human epidermal growth factor (Regen-D 150) in healing diabetic foot ulcers: a hospital-based randomized controlled trial. Int. J. Low Extrem. Wounds 19(2), 158–164 (2020).
    • 126. Hom DB, Maisel RH. Angiogenic growth factors: their effects and potential in soft tissue wound healing. Ann. Otol. Rhinol. Laryngol. 101(4), 349–354 (1992).
    • 127. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 5(1), 40–46 (2000).
    • 128. Liu Y, Liu Y, Deng J, Li W, Nie X. Fibroblast growth factor in diabetic foot ulcer: progress and therapeutic prospects. Front. Endocrinol. (Lausanne) 12, 744868 (2021).
    • 129. Beer HD, Longaker MT, Werner S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. J. Invest. Dermatol. 109(2), 132–138 (1997).
    • 130. Galiano RD, Tepper OM, Pelo CR et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol. 164(6), 1935–1947 (2004).
    • 131. Brown RL, Breeden MP, Greenhalgh DG. PDGF and TGF-alpha act synergistically to improve wound healing in the genetically diabetic mouse. J. Surg. Res. 56(6), 562–570 (1994).
    • 132. Liu Y, Zhang H, Yan L et al. MMP-2 and MMP-9 contribute to the angiogenic effect produced by hypoxia/15-HETE in pulmonary endothelial cells. J. Mol. Cell. Cardiol. 121, 36–50 (2018).
    • 133. Kandler B, Fischer MB, Watzek G, Gruber R. Platelet-released supernatant increases matrix metalloproteinase-2 production, migration, proliferation, and tube formation of human umbilical vascular endothelial cells. J. Periodontol. 75(9), 1255–1261 (2004).
    • 134. Mendonça RJ, Coutinho-Netto J. Cellular aspects of wound healing. An. Bras. Dermatol. 84(3), 257–262 (2009).
    • 135. Guo S, Dipietro LA. Factors affecting wound healing. J. Dent. Res. 89(3), 219–229 (2010).
    • 136. Marcoux G, Magron A, Sut C et al. Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions. Transfusion 59(7), 2403–2414 (2019).
    • 137. Nomura S, Okamae F, Abe M et al. Platelets expressing P-selectin and platelet-derived microparticles in stored platelet concentrates bind to PSGL-1 on filtrated leukocytes. Clin. Appl. Thromb. Hemost. 6(4), 213–221 (2000).
    • 138. Johnson J, Wu YW, Blyth C, Lichtfuss G, Goubran H, Burnouf T. Prospective therapeutic applications of platelet extracellular vesicles. Trends Biotechnol. 39(6), 598–612 (2021).
    • 139. Kuravi SJ, Harrison P, Rainger GE, Nash GB. Ability of platelet-derived extracellular vesicles to promote neutrophil-endothelial cell interactions. Inflammation 42(1), 290–305 (2019).
    • 140. Chimen M, Evryviadou A, Box CL et al. Appropriation of GPIbα from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation. Haematologica 105(5), 1248–1261 (2020).
    • 141. Lee SJ, Yoon BR, Kim HY, Yoo SJ, Kang SW, Lee WW. Activated platelets convert CD14(+) CD16(-) into CD14(+) CD16(+) monocytes with enhanced FcγR-mediated phagocytosis and skewed M2 polarization. Front. Immunol. 11, 611133 (2020).
    • 142. Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J. Immunol. 186(11), 6543–6552 (2011).
    • 143. Sadallah S, Amicarella F, Eken C, Iezzi G, Schifferli JA. Ectosomes released by platelets induce differentiation of CD4+ T cells into T regulatory cells. Thromb. Haemost. 112(6), 1219–1229 (2014).
    • 144. Chaudhary PK, Kim S, Kim S. Shedding light on the cell biology of platelet-derived extracellular vesicles and their biomedical applications. Life (Basel) 13(6), 1403 (2023).
    • 145. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol. 9, 419 (2018).
    • 146. Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Probl. Cell Differ. 62, 353–364 (2017).
    • 147. Escobar G, Escobar A, Ascui G et al. Pure platelet-rich plasma and supernatant of calcium-activated P-PRP induce different phenotypes of human macrophages. Regen. Med. 13(4), 427–441 (2018).
    • 148. Uchiyama R, Toyoda E, Maehara M et al. Effect of platelet-rich plasma on M1/M2 macrophage polarization. Int. J. Mol. Sci. 22(5), 2336 (2021).
    • 149. Lyu L, Cai Y, Zhang G et al. Exosomes derived from M2 macrophages induce angiogenesis to promote wound healing. Front. Mol. Biosci. 9, 1008802 (2022).
    • 150. Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 117(19), 5264–5272 (2011).
    • 151. Song N, Pan K, Chen L, Jin K. Platelet derived vesicles enhance the TGF-beta signaling pathway of M1 macrophage. Front. Endocrinol. (Lausanne) 13, 868893 (2022).
    • 152. Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage functions in wound healing. J. Tissue Eng. Regen. Med. 13(1), 99–109 (2019).
    • 153. Haalboom M. Chronic wounds: innovations in diagnostics and therapeutics. Curr. Med. Chem. 25(41), 5772–5781 (2018).
    • 154. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73(20), 3861–3885 (2016).
    • 155. Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on earth and in space. Front. Bioeng. Biotechnol. 10, 958381 (2022).
    • 156. Bainbridge P. Wound healing and the role of fibroblasts. J. Wound Care 22(8), 407–408; 410–412 (2013).
    • 157. Ruan GX, Kazlauskas A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 31(7), 1692–1703 (2012).
    • 158. Antich-Rosselló M, Munar-Bestard M, Forteza-Genestra MA et al. Evaluation of platelet-derived extracellular vesicles in gingival fibroblasts and keratinocytes for periodontal applications. Int. J. Mol. Sci. 23(14), 7668 (2022).
    • 159. Johnson J, Law SQK, Shojaee M et al. First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing. J. Extracell. Vesicles 12(7), e12332 (2023). •• A first-time clinical trial assessed the safety profile of injected ligand-based exosome affinity-purified platelet-derived extracellular vesicles in delayed wound healing.
    • 160. Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J. Biomed. Sci. 30(1), 79 (2023).
    • 161. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11), 3791–3799 (1999).
    • 162. Jonsdottir-Buch SM, Lieder R, Sigurjonsson OE. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLOS ONE 8(7), e68984 (2013).
    • 163. Zarà M, Vismara M, Dona G et al. The impact of platelet isolation protocol on the release of extracellular vesicles. Front. Biosci. (Landmark Ed.) 27(5), 161 (2022).
    • 164. Antich-Rosselló M, Forteza-Genestra MA, Monjo M, Ramis JM Platelet-Derived Extracellular Vesicles for Regenerative Medicine Int. J. Mol. Sci. 22(16), 8580 (2021).
    • 165. Qin B, Zhang Q, Hu XM et al. How does temperature play a role in the storage of extracellular vesicles? J. Cell. Physiol. 235(11), 7663–7680 (2020).
    • 166. Spakova T, Janockova J, Rosocha J. Characterization and therapeutic use of extracellular vesicles derived from platelets. Int. J. Mol. Sci. 22(18), 9701 (2021).
    • 167. Antich-Rosselló M, Forteza-Genestra MA, Calvo J, Gayà A, Monjo M, Ramis JM. Platelet-derived extracellular vesicles promote osteoinduction of mesenchymal stromal cells. Bone Joint Res. 9(10), 667–674 (2020).
    • 168. Rikkert LG, Coumans FAW, Hau CM, Terstappen L, Nieuwland R. Platelet removal by single-step centrifugation. Platelets 32(4), 440–443 (2021).
    • 169. Leong SY, Ong HB, Tay HM et al. Microfluidic size exclusion chromatography (μSEC) for extracellular vesicles and plasma protein separation. Small 18(6), e2104470 (2022).
    • 170. Otahal A, Kuten-Pella O, Kramer K et al. Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products. Sci. Rep. 11(1), 5823 (2021).
    • 171. Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A 1636, 461773 (2021).
    • 172. Franco C, Ghirardello A, Bertazza L et al. Size-exclusion chromatography combined with ultrafiltration efficiently isolates extracellular vesicles from human blood samples in health and disease. Int. J. Mol. Sci. 24(4), 3663 (2023).
    • 173. Ströhle G, Gan J, Li H. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis. Anal. Bioanal. Chem. 414(24), 7051–7067 (2022).
    • 174. Rui S, Yuan Y, Du C et al. Comparison and investigation of exosomes derived from platelet-rich plasma activated by different agonists. Cell Transplant. 30, 9636897211017833 (2021).
    • 175. Cao W, Meng X, Cao F, Wang J, Yang M. Exosomes derived from platelet-rich plasma promote diabetic wound healing via the JAK2/STAT3 pathway. iScience 26(11), 108236 (2023).
    • 176. Meznerics FA, Fehérvári P, Dembrovszky F et al. Platelet-rich plasma in chronic wound management: a systematic review and meta-analysis of randomized clinical trials. J. Clin. Med. 11(24), 7532 (2022). •• Systematically analysed the safety and effectiveness of platelet-rich plasma-based therapies in wound healing.
    • 177. Margono A, Bagio DA, Julianto I, Suprastiwi E. The effect of calcium gluconate on platelet rich plasma activation for VEGF-A expression of human dental pulp stem cells. Eur. J. Dent. 16(2), 424–429 (2022).
    • 178. Song J, Song B, Yuan L, Yang G. Multiplexed strategies toward clinical translation of extracellular vesicles. Theranostics 12(15), 6740–6761 (2022).
    • 179. Vozel D, Božič D, Jeran M et al. Autologous platelet- and extracellular vesicle-rich plasma is an effective treatment modality for chronic postoperative temporal bone cavity inflammation: randomized controlled clinical trial. Front. Bioeng. Biotechnol. 9, 677541 (2021).
    • 180. Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun. Signal. 20(1), 145 (2022).
    • 181. Akbarzadeh S, Mckenzie MB, Rahman MM, Cleland H. Allogeneic platelet-rich plasma: is it safe and effective for wound repair? Eur. Surg. Res. 62(1), 1–9 (2021).
    • 182. Kiefel V. Reactions induced by platelet transfusions. Transfus. Med. Hemother. 35(5), 354–358 (2008).
    • 183. Cognasse F, Hally K, Fauteux-Daniel S et al. Effects and side effects of platelet transfusion. Hamostaseologie 41(2), 128–135 (2021).
    • 184. Chen J, Wang M, Zhang Y et al. Platelet extracellular vesicles: darkness and light of autoimmune diseases. Int. Rev. Immunol. doi: 10.1080/08830185.2023.2225551, 1–11 (2023).
    • 185. Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111(10), 5028–5036 (2008).
    • 186. Agrahari V, Agrahari V, Burnouf PA, Chew CH, Burnouf T. Extracellular microvesicles as new industrial therapeutic frontiers. Trends Biotechnol. 37(7), 707–729 (2019).
    • 187. Sarkar S, Alam MA, Shaw J, Dasgupta AK. Drug delivery using platelet cancer cell interaction. Pharm. Res. 30(11), 2785–2794 (2013).
    • 188. Soleymani S, Yari F, Bolhassani A, Bakhshandeh H. Platelet microparticles: an effective delivery system for anti-viral drugs. J. Drug Deliv. Sci. Technol. 51, 290–296 (2019).
    • 189. Wu YW, Lee DY, Lu YL et al. Platelet extracellular vesicles are efficient delivery vehicles of doxorubicin, an anti-cancer drug: preparation and in vitro characterization. Platelets 34(1), 2237134 (2023).
    • 190. Lu S, Lu L, Liu Y et al. Native and engineered extracellular vesicles for wound healing. Front. Bioeng. Biotechnol. 10, 1053217 (2022).
    • 191. Joorabloo A, Liu T. Engineering exosome-based biomimetic nanovehicles for wound healing. J. Control. Rel. 356, 463–480 (2023).
    • 192. Ghaffarinovin Z, Soltaninia O, Mortazavi Y, Esmaeilzadeh A, Nadri S. Repair of rat cranial bone defect by using amniotic fluid-derived mesenchymal stem cells in polycaprolactone fibrous scaffolds and platelet-rich plasma. Bioimpacts 11(3), 209–217 (2021).
    • 193. Nadri S, Barati G, Mostafavi H, Esmaeilzadeh A, Enderami SE. Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold. Artif. Cells Nanomed. Biotechnol. 46(Suppl. 1), 178–187 (2018).
    • 194. Li S, Xing F, Yan T, Zhang S, Chen F. The efficiency and safety of platelet-rich plasma dressing in the treatment of chronic wounds: a systematic review and meta-analysis of randomized controlled trials. J. Pers. Med. 13(3), 430 (2023).
    • 195. Zeng J, Sun Z, Zeng F, Gu C, Chen X. M2 macrophage-derived exosome-encapsulated microneedles with mild photothermal therapy for accelerated diabetic wound healing. Mater. Today Bio. 20, 100649 (2023).
    • 196. Esmaeilzadeh A. Mesenchymal stem cell as a vector for gene and cell therapy strategies. Stud. Stem Cells Res. Ther. 1, 017–018 (2015).
    • 197. Garofalo M, Villa A, Crescenti D et al. Heterologous and cross-species tropism of cancer-derived extracellular vesicles. Theranostics 9(19), 5681–5693 (2019).
    • 198. Ding JY, Chen MJ, Wu LF et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil. Med. Res. 10(1), 36 (2023).
    • 199. Milbank E, Dragano NRV, González-García I et al. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nat. Metab. 3(10), 1415–1431 (2021).
    • 200. Maji S, Yan IK, Parasramka M, Mohankumar S, Matsuda A, Patel T. In vitro toxicology studies of extracellular vesicles. J. Appl. Toxicol. 37(3), 310–318 (2017).
    • 201. Mazaheri T, Esmaeilzadeh A, Mirzaei M. Introducing the immunomodulatory effects of mesenchymal stem cells in an experimental model of Behçet's disease. J. Med. Hypotheses Ideas 6, 23–27 (2012).
    • 202. Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS. Mesenchymal stromal/stem cells: a new era in the cell-based targeted gene therapy of cancer. Front. Immunol. 8, 1770 (2017).
    • 203. Marques Da Silva M, Olsson DC, Teixeira BL, Jeremias TDS, Trentin AG. Mesenchymal stromal cell-secretome for therapeutic application in skin wound healing: a systematic review of preclinical studies. Cells Tissues Organs doi:10.1159/000526093 (2022).
    • 204. Mahmoudian-Sani MR, Rafeei F, Amini R, Saidijam M. The effect of mesenchymal stem cells combined with platelet-rich plasma on skin wound healing. J. Cosmet. Dermatol. 17(5), 650–659 (2018).
    • 205. Qu F, Geng R, Liu Y, Zhu J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 12(7), 3372–3406 (2022).
    • 206. Zhao Z, Chen Y, Shi Y. Microneedles: a potential strategy in transdermal delivery and application in the management of psoriasis. RSC Adv. 10(24), 14040–14049 (2020).
    • 207. Yang G, Chen Q, Wen D et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano 13(4), 4354–4360 (2019).
    • 208. Yuan M, Liu K, Jiang T et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and tazarotene promote diabetic wound healing. J. Nanobiotechnol. 20(1), 147 (2022).