We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Oxidative stress-induced neurotoxicity of quantum dots and influencing factors

    Qing Fang

    Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China

    &
    Meng Tang

    *Author for correspondence:

    E-mail Address: tm@seu.edu.cn

    Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China

    Published Online:https://doi.org/10.2217/nnm-2023-0326

    Quantum dots (QDs) have significant potential for treating and diagnosing CNS diseases. Meanwhile, the neurotoxicity of QDs has garnered attention. In this review, we focus on elucidating the mechanisms and consequences of CNS oxidative stress induced by QDs. First, we discussed the pathway of QDs transit into the brain. We then elucidate the relationship between QDs and oxidative stress from in vivo and in vitro studies. Furthermore, the main reasons and adverse outcomes of QDs leading to oxidative stress are discussed. In addition, the primary factors that may affect the neurotoxicity of QDs are analyzed. Finally, we propose potential strategies for mitigating QDs neurotoxicity and outline future perspectives for their development.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100(31), 13226–13239 (1996).
    • 2. Matea CT, Mocan T, Tabaran F et al. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 12, 5421–5431 (2017).
    • 3. Kumar P, Kim K-H, Bansal V, Kumar S, Dilbaghi N, Kim Y-H. Modern progress and future challenges in nanocarriers for probe applications. Trends Anal. Chem. 86, 235–250 (2017).
    • 4. Esteve-Turrillas FA, Abad-Fuentes A. Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens. Bioelectron. 41, 12–29 (2013).
    • 5. Reshma VG, Mohanan PV. Quantum dots: Applications and safety consequences. J. Lumin. 205, 287–298 (2019).
    • 6. Su XH, Cheng K, Wang C, Xing L, Wu H, Cheng Z. Image-guided resection of malignant gliomas using fluorescent nanoparticles. Wiley Interdisciplin. Rev. Nanomed. Nanobiotechnol. 5(3), 219–232 (2013).
    • 7. Bian FK, Sun LY, Cai LJ, Wang Y, Zhao YJ. Quantum dots from microfluidics for nanomedical application. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11(5), (2019).
    • 8. Mohammadi R, Naderi-Manesh H, Farzin L et al. Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: a review. J. Pharm. Biomed. Anal. 212, 114628 (2022).
    • 9. Henna TK, Pramod K. Graphene quantum dots redefine nanobiomedicine. Mater. Sci. Eng. C. 110, 110651 (2020).
    • 10. Han GM, Zhao J, Zhang RL et al. Membrane-penetrating carbon quantum dots for imaging nucleic acid structures in live organisms. Angew. Chem. Int. Ed. 58(21), 7087–7091 (2019).
    • 11. Huang C, Dong H, Su Y et al. Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials 9(3), 387 (2019).
    • 12. Hersh AM, Alomari S, Tyler BM. Crossing the blood–brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 23(8), 4153 (2022).
    • 13. Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug delivery systems and strategies to overcome the barriers of brain. Curr. Pharm. Des. 28(8), 619–641 (2022).
    • 14. Wu T, Liang X, He K et al. The NLRP3-mediated neuroinflammatory responses to CdTe quantum dots and the protection of ZnS shell. Int. J. Nanomed. 15, 3217–3233 (2020).
    • 15. Matos B, Martins M, Samamed AC, Sousa D, Ferreira I, Diniz MS. Toxicity evaluation of quantum dots (ZnS and CdS) singly and combined in zebrafish (Danio rerio). Int. J. Environ. Res. Public Health 17(1), 232 (2020).
    • 16. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr. Biol. 24(10), R453–R462 (2014).
    • 17. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants – an overview on their chemistry and influences on health status. Eur. J. Med. Chem. 209, (2021).
    • 18. Deng S, Fu AL, Junaid M et al. Nitrogen-doped graphene quantum dots (N-GQDs) perturb redox-sensitive system via the selective inhibition of antioxidant enzyme activities in zebrafish. Biomaterials 206, 61–72 (2019).
    • 19. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regener. Res. 8(21), 2003–2014 (2013).
    • 20. He KY, Liang X, Wei TT et al. A metabolomics study: CdTe/ZnS quantum dots induce polarization in mice microglia. Chemosphere 246,(2020). •• In this study, a metabolomic analysis was used to reveal the neurotoxicity of the cadmium telluride (CdTe)/ZnS quantum dots (QDs) via microglia polarization.
    • 21. Chan WH, Shiao NH, Lu PZ. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol. Lett. 167(3), 191–200 (2006).
    • 22. Wu T, He K, Ang H et al. Impairments of spatial learning and memory following intrahippocampal injection in rats of 3-mercaptopropionic acid-modified CdTe quantum dots and molecular mechanisms. Int. J. Nanomed. 11, 2737–2755 (2016).
    • 23. Qiang YU, Kun-Gang LI, Xing WEN, Jun LI, Yu-Qiu W. The cytotoxicity mechanism of unmodified cadmium sulfide quantum dots. Asian J. Ecotoxicol. 4(4), 488–493 (2009).
    • 24. Alexander A, Agrawal M, Uddin A et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int. J. Nanomed. 14, 5895–5909 (2019).
    • 25. Patel MM, Patel BM. Crossing the blood–brain barrier: recent advances in drug delivery to the brain. CNS Drugs 31(2), 109–133 (2017).
    • 26. Pardridge WM. Blood–brain barrier drug targeting: the future of brain drug development. Mol. Interventions 3(2), 90–51 (2003).
    • 27. Yang S, Chen Z, Zhou P, Xia J, Deng T, Yu C. Carbon dots based on endogenous nutrients with visible and NIR fluorescence to penetrate blood–brain barrier. Carbon 202, 130–140 (2023).
    • 28. Aaron PA, Gelli A. Harnessing the activity of the fungal metalloprotease, Mpr1, to promote crossing of nanocarriers through the blood–brain barrier. ACS Infect. Dis. 6(1), 138–149 (2020).
    • 29. Tang J, Huang N, Zhang X et al. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int. J. Nanomed. 12, 3899–3911 (2017).
    • 30. Yang HY, Fu Y, Jang M-S et al. CdSe@ZnS/ZnS quantum dots loaded in polymeric micelles as a pH-triggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids Surf. B. 155, 497–506 (2017).
    • 31. He K, Liang X, Wei T et al. A metabolomics study: CdTe/ZnS quantum dots induce polarization in mice microglia. Chemosphere 246, 125629 (2020).
    • 32. Elder A, Gelein R, Silva V et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114(8), 1172–1178 (2006).
    • 33. Huynh H, Upadhyay P, Lopez CH et al. Inhalation of silver silicate nanoparticles leads to transient and differential microglial activation in the rodent olfactory bulb. Toxicol. Pathol. 50(6), 763–775 (2022).
    • 34. Bonaccorso A, Musumeci T, Serapide MF, Pellitteri R, Uchegbu IF, Puglisi G. Nose to brain delivery in rats: effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids Surf. B. 154, 297–306 (2017).
    • 35. Oberdorster E. Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112(10), 1058–1062 (2004).
    • 36. Hopkins LE, Patchin ES, Chiu PL, Brandenberger C, Smiley-Jewell S, Pinkerton KE. Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology 8(8), 885–893 (2014).
    • 37. Hunter DD, Dey RD. Identification and neuropeptide content of trigeminal neurons innervating the rat nasal epithelium. Neuroscience 83(2), 591–599 (1998).
    • 38. Hunter DD, Undem BJ. Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am. J. Respir. Crit Care Med. 159(6), 1943–1948 (1999).
    • 39. Varmazyari A, Taghizadehghalehjoughi A, Baris O, Yilmaz A, Hacimuftuoglu A. The evaluation of the cortex neurons viability in CdS nanoparticles induced toxicity. Nanomed. J. 8(3), 211–219 (2021).
    • 40. Garcia-Calvo E, Cabezas-Sanchez P, Luque-Garcia JL. In-vitro and in-vivo evaluation of the molecular mechanisms involved in the toxicity associated to CdSe/ZnS quantum dots exposure. Chemosphere 263, 128170 (2021).
    • 41. Liang X, Wu T, Tang M. Microarray analysis of gene expression differences in microglia after exposure to graphene quantum dots. Sci. Total Environ. 749, 141385 (2020).
    • 42. Li M, Su W, Wu H et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nature Biomed. Eng. 4(7), 704–716 (2020).
    • 43. Deng S, Zhang EM, Tao JY et al. Graphene quantum dots (GQDs) induce thigmotactic effect in zebrafish larvae via modulating key genes and metabolites related to synaptic plasticity. Toxicology 487, 153462 (2023).
    • 44. Chen Y, Yang Y, Ou F et al. InP/ZnS QDs exposure induces developmental toxicity in rare minnow (Gobiocypris rarus) embryos. Environ. Toxicol. Pharmacol. 60, 28–36 (2018).
    • 45. Dong C, Wang SN, Ma MH et al. Inhibition of oxidative stress in vivo through enzyme-like activity of carbon dots. Appl. Mater. Today 25, 101178 (2021).
    • 46. Cao X, Fu M, Du Q, Chang Z. Developmental toxicity of black phosphorus quantum dots in zebrafish (Danio rerio) embryos. Chemosphere 335, 139029 (2023).
    • 47. Guo X, Lie QS, Liu YA et al. Multifunctional selenium quantum dots for the treatment of Alzheimer's disease by reducing a beta-neurotoxicity and oxidative stress and alleviate neuroinflammation. Acs Appl. Mater. Interf. 13(26), 30261–30273 (2021).
    • 48. Ren CX, Li DD, Zhou QX, Hu XG. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials 232, 119752 (2020).
    • 49. Nguyen KC, Zhang Y, Todd J et al. Biodistribution and systemic effects in mice following intravenous administration of cadmium telluride quantum dot nanoparticles. Chem. Res. Toxicol. 32(8), 1491–1503 (2019).
    • 50. Li L, Chen YJ, Xu GX et al. In vivo comparison of the biodistribution and toxicity of InP/ZnS quantum dots with different surface modifications. Int. J. Nanomed. 15, 1951–1965 (2020).
    • 51. He K, Liang X, Wei T et al. DNA damage in BV-2 cells: an important supplement to the neurotoxicity of CdTe quantum dots. J. Appl. Toxicol. 39(3), 525–539 (2019).
    • 52. Bai C, Wei T, Zou L, Liu N, Huang X, Tang M. The apoptosis induced by CdTe quantum dots through the mitochondrial pathway in dorsal root ganglion cell line ND7/23. J. Appl. Toxicol. doi:10.1002/jat.4291 (2022).
    • 53. Manshian BB, Jimenez J, Himmelreich U, Soenen SJ. Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials 127, 1–12 (2017).
    • 54. Zhao L, Guo Z, Wu H, Wang Y, Zhang H, Liu R. New insights into the release mechanism of Cd2+ from CdTe quantum dots within single cells in situ. Ecotoxicol. Environ. Saf. 196,(2020).
    • 55. Wu T, He K, Zhan Q et al. Partial protection of N-acetylcysteine against MPA-capped CdTe quantum dot-induced neurotoxicity in rat primary cultured hippocampal neurons. Toxicol. Res. 4(6), 1613–1622 (2015).
    • 56. Buffet PE, Zalouk-Vergnoux A, Poirier L et al. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana. Environ. Toxicol. Chem. 34(7), 1659–1664 (2015).
    • 57. Zonouzi-Marand M, Naderi M, Kwong RWM. Toxicological assessment of cadmium-containing quantum dots in developing zebrafish: physiological performance and neurobehavioral responses. Aquat. Toxicol. 247,(2022).
    • 58. Tian J, Hu J, Liu G et al. Altered gene expression of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos exposed to CdTe quantum dots. Environ. Pollut. 244, 588–599 (2019). • In this work, gene expression alterations of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos after the treatment of mercaptopropionic acid (MPA)-CdTe QDs and MPA-CdS-CdTe QDs were investigated.
    • 59. Zheng B, Guo MM, Song X, Miao YD, Pang MJ, Ming D. Reversing the systemic biotoxicity of nanomaterials by downregulating ROS-related signaling pathways in the multi-organs of Zebrafish embryos. Mater. Chem. Front. 5(11), 4231–4243 (2021).
    • 60. Wu T, Liang X, Liu X et al. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part. Fibre Toxicol. 17(1), 30 (2020).
    • 61. Wu TS, He KY, Liang X et al. The glycolytic shift was involved in CdTe/ZnS quantum dots inducing microglial activation mediated through the mTOR signaling pathway. J. Appl. Toxicol. 40(3), 388–402 (2020).
    • 62. Liang X, Wu T, Wang Y et al. CdTe and CdTe@ZnS quantum dots induce IL-beta-mediated inflammation and pyroptosis in microglia. Toxicol. In Vitro 65, 104827 (2020).
    • 63. Xiao A, Wang C, Chen J, Guo RX, Yan ZY, Chen JQ. Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa. Ecotoxicol. Environ. Saf. 133, 211–217 (2016).
    • 64. Liang X, Wang X, Cheng J, Zhang X, Wu T. Ag(2)Se quantum dots damage the nervous system of nematode Caenorhabditis elegans. Bull. Environ. Contam. Toxicol. 109(2), 279–285 (2022).
    • 65. Liu L, Xiao Y-Y, Ji Y-H et al. CuInS2/ZnS QD exposure induces developmental toxicity, oxidative stress and DNA damage in rare minnow (Gobiocypris rarus) embryos and larvae. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 198, 19–27 (2017).
    • 66. Li P, Xu TT, Wu SY, Lei LL, He DF. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans. J. Appl. Toxicol. 37(10), 1140–1150 (2017).
    • 67. Ren CX, Hu XG, Zhou QX. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv. Sci. 5(5), 1700595 (2018). • It is shown here that, compared withlarge graphene oxide (GO) nanosheets, GO quantum dots (GOQDs), as nanozymes efficiently reduce reactive oxygen species (ROS) and H2O2 in 1-methyl-4-phenyl-pyridinium ion (MPP+)-induced PC12 cells.
    • 68. Krunic M, Ristic B, Bosnjak M et al. Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death. Free Radical Biol. Med. 177, 167–180 (2021).
    • 69. Wang H, Xie Y, Na X et al. Fluorescent carbon dots in baked lamb: formation, cytotoxicity and scavenging capability to free radicals. Food Chem. 286, 405–412 (2019).
    • 70. Wang H, Zhang M, Ma Y et al. Carbon dots derived from citric acid and glutathione as a highly efficient intracellular reactive oxygen species scavenger for alleviating the lipopolysaccharide-induced inflammation in macrophages. ACS Appl. Mater. Interf. 12(37), 41088–41095 (2020).
    • 71. Ahlawat J, Henriquez G, Varela-Ramirez A, Fairman R, Narayan M. Gelatin-derived carbon quantum dots mitigate herbicide-induced neurotoxic effects in vitro and in vivo. Biomater. Adv. 137, 212837 (2022).
    • 72. Cao XL, Yuan RJ, Sun DD et al. Assessment of the therapeutic potential of probiotics against carbon quantum dots-induced neurotoxicity in common carp (Cyprinus carpio). Aquat. Toxicol. 258, 106508 (2023).
    • 73. Juan CA, De La Lastra JMP, Plou FJ, Perez-Lebena E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 22(9), 4642 (2021). •• In this article cellular and biochemical experiments have been complemented in various ways to explain the biological chemistry of ROS oxidants.
    • 74. Ul Hassan SS, Samanta S, Dash R et al. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: focus on the role of oxidative stress. Front. Pharmacol. 13, 1015835 (2022).
    • 75. Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22(5), 280–297 (2022).
    • 76. Murphy MP. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).
    • 77. Brand MD. The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45(7–8), 466–472 (2010).
    • 78. Wu T, He K, Zhan Q et al. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both. Nanoscale 7(48), 20460–20473 (2015).
    • 79. Indo HP, Davidson M, Yen HC et al. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7(1–2), 106–118 (2007).
    • 80. Wu T, Zhan Q, Zhang T et al. The protective effects of resveratrol, H2S and thermotherapy on the cell apoptosis induced by CdTe quantum dots. Toxicol. In Vitro 41, 106–113 (2017).
    • 81. Moussa H, Merlin C, Dezanet C et al. Trace amounts of Cu2+ ions influence ROS production and cytotoxicity of ZnO quantum dots. J. Hazard. Mater. 304, 532–542 (2016).
    • 82. Zhang Y, Yang C, Yang DL et al. Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. PCCP 20(25), 17262–17267 (2018).
    • 83. Hao ML, Liu RT. Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes. Spectrochim. Acta Part A 220, 117104 (2019).
    • 84. Zhao LN, Guo DD, Lin J, Liu RT. Responses of catalase and superoxide dismutase to low-dose quantum dots on molecular and cellular levels. Ecotoxicol. Environ. Saf. 181, 388–394 (2019).
    • 85. Hao ML, Liu RT. Conformational and functional effects of MPA-CdTe quantum dots on SOD: evaluating the mechanism of oxidative stress induced by quantum dots in the mouse nephrocytes. J. Mol. Recognit. 32(9), e2783 (2019).
    • 86. Wang J, Sun H, Meng P et al. Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice. Int. J. Nanomed. 12, 6425–6435 (2017).
    • 87. Yan ZD, Yang XN, Lynch I, Cui FY. Comparative evaluation of the mechanisms of toxicity of graphene oxide and graphene oxide quantum dots to blue-green algae Microcystis aeruginosa in the aquatic environment. J. Hazard. Mater. 425, 127898 (2022).
    • 88. Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol. Aspects Med. 33(4), 399–417 (2012).
    • 89. Pizzino G, Irrera N, Cucinotta M et al. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longevity 2017, 8416763 (2017).
    • 90. Shao Y, Wang LT, Chen JJ et al. Increased lipid peroxidation by graphene quantum dots induces ferroptosis in macrophages. Nanoimpact 23, 100334 (2021).
    • 91. Choi AO, Cho SJ, Desbarats J, Lovric J, Maysinger D. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J. Nanobiotechnol. 5, 1 (2007).
    • 92. Li X, Zhang H, Sun F. CdSe/ZnS quantum dots exhibited nephrotoxicity through mediating oxidative damage and inflammatory response. Aging 13(8), 12194–12206 (2020).
    • 93. Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98(3), 1169–1203 (2018).
    • 94. Liu HP, Liu HJ, Liu HY et al. Study on the genetic damage caused by cadmium sulfide quantum dots in human lymphocytes. Open Life Sci. 17(1), 463–472 (2022).
    • 95. Hu JJ, Lin WT, Lin BJ, Wu KM, Fan HB, Yu YX. Persistent DNA methylation changes in zebrafish following graphene quantum dots exposure in surface chemistry-dependent manner. Ecotoxicol. Environ. Saf. 169, 370–375 (2019).
    • 96. Yao Y, Zhang T, Tang M. The DNA damage potential of quantum dots: toxicity, mechanism and challenge. Environ. Pollut. (Barking, Essex: 1987) 317, 120676 (2023).
    • 97. Ding YH, Yang Y, Chen J, Chen H, Wu YY, Jin L. Toxic effects of ZnSe/ZnS quantum dots on the reproduction and genotoxiticy of rare minnow (Gobiocypris rarus). Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 247, 109065 (2021).
    • 98. Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention. Med. Res. Rev. 41(2), 770–784 (2021).
    • 99. Fang TT, Li X, Wang QS, Zhang ZJ, Liu P, Zhang CC. Toxicity evaluation of CdTe quantum dots with different size on Escherichia coli. Toxicol. In Vitro 26(7), 1233–1239 (2012).
    • 100. Wu T, Liang X, He K et al. Transcriptome analysis of different sizes of 3-mercaptopropionic acid-modified cadmium telluride quantum dot-induced toxic effects reveals immune response in rat hippocampus. J. Appl. Toxicol. 38(9), 1177–1194 (2018).
    • 101. Wu TS, Liang X, He KY et al. MPA-modified CdTe quantum dots increased interleukin-1beta secretion through MyD88-dependent Toll-like receptor pathway and NLRP3 inflammasome activation in microglia. Toxicol. In Vitro 52, 41–51 (2018).
    • 102. Hu L, Zhong H, He Z. The cytotoxicities in prokaryote and eukaryote varied for CdSe and CdSe/ZnS quantum dots and differed from cadmium ions. Ecotoxicol. Environ. Saf. 181, 336–344 (2019).
    • 103. Wu TS, Liang X, He KY et al. The role of NLRP3 inflammasome activation in the neuroinflammatory responses to Ag2Se quantum dots in microglia. Nanoscale 11(43), 20820–20836 (2019).
    • 104. Vilela DD, Justino AB, Caixeta DC et al. Increased selenium concentration in the synthesis of CdSe magic-sized quantum dots affects how the brain responds to oxidative stress. J. Biomed. Mater. Res. Part B 110(5), 1140–1150 (2022).
    • 105. Ku TT, Ren ZH, Yang RJ et al. Abnormal neural differentiation in response to graphene quantum dots through histone modification interference. Environ. Int. 170, 107572 (2022).
    • 106. Han XL, Lei JW, Chen K et al. Cytotoxicity of CdTe quantum dots with different surface coatings against yeast Saccharomyces cerevisiae. Ecotoxicol. Environ. Saf. 174, 467–474 (2019). • In this study, to overcome the inherent toxicity of heavy metals, CdTe QDs were encapsulated with different shells (NAC, MPA and GSH) to reduce the leakage of Cd from the core.
    • 107. Xiang X, Wu C, Zhang BR et al. The relationship between the length of surface ligand and effects of CdTe quantum dots on the physiological functions of isolated mitochondria. Chemosphere 184, 1108–1116 (2017).
    • 108. Liu YF, Yu JS. In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility. J. Colloid Interface Sci. 351(1), 1–9 (2010).
    • 109. Tang Y, Han SL, Liu HM et al. The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots. Biomaterials 34(34), 8741–8755 (2013).
    • 110. Sukhanova A, Bozrova S, Gerasimovich E et al. Dependence of quantum dot toxicity in vitro on their size, chemical composition, and surface charge. Nanomaterials 12(16), 2734 (2022).
    • 111. Liu N, Liang Y, Wei T et al. Protein corona mitigated the cytotoxicity of CdTe QDs to macrophages by targeting mitochondria. Nanoimpact 25, 100367 (2022).
    • 112. Bai CC, Tang M. Progress on the toxicity of quantum dots to model organism-zebrafish. J. Appl. Toxicol. 43(1), 89–106 (2023).
    • 113. Wang Y, Tang M. Review of in vitro toxicological research of quantum dot and potentially involved mechanisms. Sci. Total Environ. 625, 940–962 (2018).
    • 114. Liu F, Lin J, Luo Y et al. Sialic acid-targeting multi-functionalized silicon quantum dots for synergistic photodynamic and photothermal cancer therapy. Biomater. Sci. doi:10.1039/d3bm00339f (2023).
    • 115. Perini G, Palmieri V, Friggeri G, Augello A, De Spirito M, Papi M. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nanotechnol. 14(1), (2023).
    • 116. Wibrianto A, Getachew G, Dirersa WB et al. A multifunctional nanocatalyst based on ultra-fluorescent carbon quantum dots for cascade enzymatic activity and stimuli-responsive chemotherapy of cancer. Carbon 208, 191–207 (2023).
    • 117. Zhang WH, Yu LT, Jiang Y, Guo CY. Phycocyanin-functionalized black phosphorus quantum dots enhance PDT/PTT therapy by inducing ROS and irreparable DNA damage. Biomater. Sci. 9(15), 5302–5318 (2021).
    • 118. Perillo B, Di Donato M, Pezone A et al. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52(2), 192–203 (2020).
    • 119. Wei LM, Wang JF, Chen AJ, Liu J, Feng XL, Shao LQ. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells. Int. J. Nanomed. 12, 1891–1903 (2017).