We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Radiofrequency driving antitumor effect of graphene oxide-based nanocomposites: a Hill model analysis

    Melissa S Monteiro

    Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    ,
    Marina S Mesquita

    Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    ,
    Leidiane M Garcia

    Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    ,
    Paulo R dos Santos

    Porto Velho Calama Campus, Federal Institute of Rondônia, Porto Velho, Rondônia, 76820-441, Brazil

    ,
    Cássia C de Marangoni de Viveiros

    Aparício Carvalho University Center /FIMCA, Rondônia, 76811-678, Brazil

    ,
    Ronei D da Fonseca

    PRC/DIMAT, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    ,
    Mary A Xavier

    Faculty of Agronomy & Veterinary, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    ,
    Gabriel WS de Mendonça

    Faculty of Gama, University of Brasília, Brasília, Distrito Federal, 72444-240, Brazil

    ,
    Suélia SRF Rosa

    Faculty of Gama, University of Brasília, Brasília, Distrito Federal, 72444-240, Brazil

    ,
    Saulo LP Silva

    Institute of Chemistry, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    ,
    Leonardo G Paterno

    Institute of Chemistry, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    ,
    Paulo C Morais

    Institute of Physics, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    Biotechnology & Genomic Sciences, Catholic University of Brasília, Brasília, Distrito Federal, 70790-160, Brazil

    &
    Sônia N Báo

    *Author for correspondence: Tel.: +55 619 909 5005;

    E-mail Address: snbao@unb.br

    Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil

    Published Online:https://doi.org/10.2217/nnm-2023-0312

    Aim: This report proposes using the Hill model to assess the benchmark dose, the 50% lethal dose, the cooperativity and the dissociation constant while analyzing cell viability data using nanomaterials to evaluate the antitumor potential while combined with radiofrequency therapy. Materials & methods: A nanocomposite was synthesized (graphene oxide–polyethyleneimine–gold) and the viability was evaluated using two tumor cell lines, namely LLC-WRC-256 and B16-F10. Results: Our findings demonstrated that while the nanocomposite is biocompatible against the LLC-WRC-256 and B16-F10 cancer cell lines in the absence of radiofrequency, the application of radiofrequency enhances the cell toxicity by orders of magnitude. Conclusion: This result points to prospective studies with the tested cell lines using tumor animal models.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ahmed B, Qadir MI, Ghafoor S. Malignant melanoma: skin cancer-diagnosis, prevention, and treatment. Crit. Rev. Eukaryot. Gene Expr. 30(4), 291–297 (2020).
    • 2. Gastman BR, Neumeister MW. A melanoma update. Clin. Plast. Surg. 48(4), xiii–xiv (2021).
    • 3. Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
    • 4. Lim M-H, Jeung IC, Jeong J et al. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases. Acta Biomater. 46, 191–203 (2016).
    • 5. Mohammadinejad R, Moosavi MA, Tavakol S et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15(1), 4–33 (2019).
    • 6. Achawi S, Pourchez J, Feneon B, Forest V. Graphene-based materials in vitro toxicity and their structure–activity relationships: a systematic literature review. Chem. Res. Toxicol. 34(9), 2003–2018 (2021).
    • 7. Byrne HJ, Maher MA. Numerically modelling time and dose dependent cytotoxicity. Comput. Toxicol. 12, 100090 (2019).
    • 8. Wen M, Li J, Zhong W et al. High-throughput colorimetric analysis of nanoparticle–protein interactions based on the enzyme-mimic properties of nanoparticles. Anal. Chem. 94(24), 8783–8791 (2022).
    • 9. Ayensa-Jiménez J, Pérez-Aliacar M, Randelovic T et al. Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: application to different stages of glioblastoma evolution. Sci. Rep. 10(1), 21193 (2020).
    • 10. Sengers BG, Please CP, Oreffo ROC. Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface 4(17), 1107–1117 (2007).
    • 11. Montes-Olivas S, Marucci L, Homer M. Mathematical models of organoid cultures. Front. Genet. 10, 873 (2019).
    • 12. Dogra P, Butner JD, Chuang Y et al. Mathematical modeling in cancer nanomedicine: a review. Biomed. Microdevices 21(2), 40 (2019). •• Shows the new frontiers that can be solved with mathematical models.
    • 13. Dogra P, Butner JD, Ruiz Ramírez J et al. A mathematical model to predict nanomedicine pharmacokinetics and tumor delivery. Comput. Struct. Biotechnol. J. 18, 518–531 (2020).
    • 14. Morais PC, Silva DC. Mathematical modeling for an MTT assay in fluorine-containing graphene quantum dots. Nanomaterials 12(3), 413 (2022). •• Shows the new frontiers that can be solved with mathematical models.
    • 15. Li J, Wang C, Yue L, Chen F, Cao X, Wang Z. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: a review. Ecotoxicol. Environ. Saf. 243, 113955 (2022).
    • 16. Hill AV, Hill A, Paganini-Hill A. The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J. Physiol. 40, 4–7 (1910). • The mathematical model used in our study.
    • 17. Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14(1), 1–16 (2012).
    • 18. Sun X, Shi J, Zou X, Wang C, Yang Y, Zhang H. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization. J. Hazard. Mater. 317, 570–578 (2016).
    • 19. Sabourian P, Yazdani G, Ashraf SS et al. Effect of physico-chemical properties of nanoparticles on their intracellular uptake. Int. J. Mol. Sci. 21(21), 8019 (2020).
    • 20. Shi T, Sun X, He Q-Y. Cytotoxicity of silver nanoparticles against bacteria and tumor cells. Curr. Protein Pept. Sci. 19(6), 525–536 (2018).
    • 21. Hanan N, Chiu H, Ramachandran M et al. Cytotoxicity of plant-mediated synthesis of metallic nanoparticles: a systematic review. Int. J. Mol. Sci. 19(6), 1725 (2018).
    • 22. Kus-Liśkiewicz M, Fickers P, Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: recent advances in methodologies and regulations. Int. J. Mol. Sci. 22(20), 10952 (2021).
    • 23. Bhatti R, Shakeel H, Malik K et al. Inorganic nanoparticles: toxic effects, mechanisms of cytotoxicity and phytochemical interactions. Adv. Pharm. Bull. 12(4), 757–762 (2021).
    • 24. Kawakami T, Miyajima A, Komoriya K, Kato R, Isama K. Effect of secondary particle size of nickel oxide nanoparticles on cytotoxicity in A549 cells. J. Toxicol. Sci. 47(4), 151–157 (2022).
    • 25. Min Y, Suminda GGD, Heo Y, Kim M, Ghosh M, Son Y-O. Metal-based nanoparticles and their relevant consequences on cytotoxicity cascade and induced oxidative stress. Antioxidants 12(3), 703 (2023).
    • 26. Yin Y, Li X, Ma H et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 21(5), 2224–2231 (2021). • Shows the the advantages of polyethylenimine.
    • 27. Fiorillo M, Verre AF, Iliut M et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via ‘differentiation-based nano-therapy’. Oncotarget 6(6), 3553–3562 (2015).
    • 28. Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cells Nanomed. Biotechnol. 46(Suppl.), 1210–1220 (2018).
    • 29. Fan M, Han Y, Gao S et al. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics 10(11), 4944–4957 (2020).
    • 30. Maeda M, Saeki I, Sakaida I et al. Complications after radiofrequency ablation for hepatocellular carcinoma: a multicenter study involving 9411 Japanese patients. Liver Cancer 9(1), 50–62 (2020).
    • 31. Muhammad H, Santhanam P, Russell JO. Radiofrequency ablation and thyroid nodules: updated systematic review. Endocrine 72(3), 619–632 (2021).
    • 32. He YZ, He K, Huang RQ et al. A clinical scoring system for predicting tumor recurrence after percutaneous radiofrequency ablation for 3 cm or less hepatocellular carcinoma. Sci. Rep. 11(1), 8275 (2021).
    • 33. Markezana A, Goldberg SN, Kumar G et al. Incomplete thermal ablation of tumors promotes increased tumorigenesis. Int. J. Hyperthermia 38(1), 263–272 (2021). •• Shows the risks of incomplete radiofrequency ablation.
    • 34. Beyk J, Tavakoli H. Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide–gold nanohybrid. J. Cancer Res. Clin. Oncol. 145(9), 2199–2209 (2019). • Shows the importance of the combined therapy with radiofrequency.
    • 35. Wang F, Xu C, Li G, Lv P, Gu J. Incomplete radiofrequency ablation induced chemoresistance by up-regulating heat shock protein 70 in hepatocellular carcinoma. Exp. Cell Res. 409(2), 112910 (2021).
    • 36. Yang Z, Zhu Y, Dong Z et al. Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nat. Commun. 12(1), 4299 (2021).
    • 37. Yi L, Zhang Y, Shi X et al. Recent progress of functionalised graphene oxide in cancer therapy. J. Drug Target. 27(2), 125–144 (2019). • Shows the use of graphene oxide in cancer therapy.
    • 38. Sharma H, Mondal S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int. J. Mol. Sci. 21(17), 6280 (2020).
    • 39. Dash BS, Jose G, Lu Y-J, Chen J-P. Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int. J. Mol. Sci. 22(6), 2989 (2021).
    • 40. Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 22(23), 12827 (2021).
    • 41. Costa ÍA, Maciel AP, Sales MJA et al. Photocatalytic method for the simultaneous synthesis and immobilization of Ag nanoparticles onto solid substrates. J. Phys. Chem. C 122(42), 24110–24119 (2018).
    • 42. Teixeira PR, Santos MSC, Silva ALG et al. Photochemically-assisted synthesis of non-toxic and biocompatible gold nanoparticles. Colloids Surf. B Biointerfaces 148, 317–323 (2016).
    • 43. Wang F, Liu X, Lu C-H, Willner I. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors. ACS Nano 7(8), 7278–7286 (2013).
    • 44. Da Fonseca RD, Santos PR, Monteiro MS et al. Parametric evaluation of impedance curve in radiofrequency ablation: a quantitative description of the asymmetry and dynamic variation of impedance in bovine ex vivo model. PLOS ONE 16(1), e0245145 (2021). • Show the parameters of radiofrequency ablation.
    • 45. Brigatte P, Sampaio SC, Gutierrez VP et al. Walker 256 tumor-bearing rats as a model to study cancer pain. J. Pain 8(5), 412–421 (2007).
    • 46. Amaral LAD, Souza GHOD, Santos MR et al. Walker-256 tumor: experimental model, implantation sites and number of cells for ascitic and solid tumor development. Braz. Arch. Biol. Technol. 62, e19180284 (2019).
    • 47. Patton EE, Mueller KL, Adams DJ et al. Melanoma models for the next generation of therapies. Cancer Cell 39(5), 610–631 (2021).
    • 48. Abdalla M, Collings AT, Dirks R et al. Surgical approach to microwave and radiofrequency liver ablation for hepatocellular carcinoma and colorectal liver metastases less than 5 cm: a systematic review and meta-analysis. Surg. Endosc. 37(5), 3340–3353 (2023).
    • 49. Goutelle S, Maurin M, Rougier F et al. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 22(6), 633–648 (2008).
    • 50. Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M. Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sci. 70(7), 791–798 (2002).
    • 51. De Oliveira JV, Oliveira Da Rocha MC, De Sousa-Junior AA et al. Tumor vascular heterogeneity and the impact of subtumoral nanoemulsion biodistribution. Nanomedicine 17(27), 2073–2088 (2022).
    • 52. Yunus MA, Ramli MM, Osman NH, Mohamed R. Stimulation of innate and adaptive immune cells with graphene oxide and reduced graphene oxide affect cancer progression. Arch. Immunol. Ther. Exp. 69(1), 20 (2021).
    • 53. Pandey AP, Sawant KK. Polyethylenimine: a versatile, multifunctional non-viral vector for nucleic acid delivery. Mater. Sci. Eng. C 68, 904–918 (2016).
    • 54. Raoof M, Corr SJ, Zhu C et al. Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomed. Nanotechnol. Biol. Med. 10(6), 1121–1130 (2014).
    • 55. Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in A549 cells. J. Cell. Biochem. 117(10), 2302–2314 (2016).
    • 56. Ferreira D, Fontinha D, Martins C, Pires D, Fernandes AR, Baptista PV. Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics. Molecules 25(15), 3489 (2020).
    • 57. Mellor RD, Uchegbu IF. Ultrasmall-in-nano: why size matters. Nanomaterials 12(14), 2476 (2022).
    • 58. Jiang H-L, Islam MA, Xing L et al. Degradable polyethylenimine-based gene carriers for cancer therapy. Top. Curr. Chem. 375(2), 34 (2017).
    • 59. Mulens-Arias V, Nicolás-Boluda A, Carn F, Gazeau F. Cationic polyethyleneimine (PEI)–gold nanocomposites modulate macrophage activation and reprogram mouse breast triple-negative MET-1 tumor immunological microenvironment. Pharmaceutics 14(10), 2234 (2022).
    • 60. Taheri-Ledari R, Zhang W, Radmanesh M et al. Multi-stimuli nanocomposite therapeutic: docetaxel targeted delivery and synergies in treatment of human breast cancer tumor. Small 16(41), 2002733 (2020).
    • 61. Zhao R, Kong W, Sun M et al. Highly stable graphene-based nanocomposite (GO-PEI-Ag) with broad-spectrum, long-term antimicrobial activity and antibiofilm effects. ACS Appl. Mater. Interfaces 10(21), 17617–17629 (2018).
    • 62. Jiang B, Liang Y, Wu Q et al. New GO-PEI-Au-L-Cys ZIC-HILIC composites: synthesis and selective enrichment of glycopeptides. Nanoscale 6(11), 5616–5619 (2014).
    • 63. Deng N, Chen Y, Jiang B et al. A robust and effective intact protein fractionation strategy by GO/PEI/Au/PEG nanocomposites for human plasma proteome analysis. Talanta 178, 49–56 (2018).
    • 64. Eivazzadeh-Keihan R, Radinekiyan F, Madanchi H, Aliabadi HAM, Maleki A. Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 248, 116802 (2020).
    • 65. Wang X, Liang X-J, Zhang J, Chen J, Liu J. Protocol for designing and preparing gallium particles using cell membrane encapsulation for applications in melanoma cryoablation therapy. STAR Protoc. 3(4), 101826 (2022).
    • 66. Lara-Vega I, Vega-López A. Combinational photodynamic and photothermal-based therapies for melanoma in mouse models. Photodiagnosis Photodyn. Ther. 43, 103596 (2023).
    • 67. Crezee J, Bakker A, Zweije R et al. Combined use of wIRA and microwave or radiofrequency hyperthermia. In: Water-Filtered Infrared A (wIRA) Irradiation. Vaupel P (Ed.). Springer International Publishing, Cham, Switzerland, 97–106 (2022).