We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Revamping the corneal permeability and antiglaucoma therapeutic potential of brinzolamide using transniosomes: optimization, in vitro and preclinical evaluation

    Rushikesh K Patil

    Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India

    ,
    Vaibhavi Srivastava

    Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India

    ,
    Rohit Bhawale

    Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India

    ,
    Kamatham Pushpa Tryphena

    Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India

    ,
    Dharmendra Kumar Khatri

    **Author for correspondence:

    E-mail Address: dkkhatri10@gmail.com

    Molecular & Cellular Neuroscience Lab, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana-500037, India

    Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai-400056, India

    ,
    Nandkumar Doijad

    Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India

    &
    Neelesh Kumar Mehra

    *Author for correspondence:

    E-mail Address: neelesh81mph@gmail.com

    Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, 500037, India

    Published Online:https://doi.org/10.2217/nnm-2023-0280

    Aim: This study aims to explore potential of transniosomes, a hybrid vesicular system, as ocular drug-delivery vehicle. Materials & methods: Thin-film hydration technique was used to fabricate brinzolamide-loaded transniosomes (BRZ-TN) and optimized using Box–Behnken design, further exhaustively characterized for physicochemical evaluations, deformability, drug release, permeation and preclinical evaluations for antiglaucoma activity. Results: The BRZ-TN showed ultradeformability (deformability index: 5.71), exhibiting sustained drug release without irritation (irritancy score: 0) and high permeability compared with the marketed formulation or free drug suspension. The extensive in vivo investigations affirmed effective targeted delivery of transniosomes, with brinzolamide reducing intraocular pressure potentially. Conclusion: Our findings anticipated that BRZ-TN is a promising therapeutic nanocarrier for effectively delivering cargo to targeted sites by crossing corneal barriers.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: preparation, characterization and in vivo evaluation. J. Drug Deliv. Sci. Technol. 59(2), 1–16 (2020).
    • 2. Nair VS, Srivastava V, Bhavana V et al. Exploring penetration ability of carbonic anhydrase inhibitor-loaded ultradeformable bilosome for effective ocular application. AAPS PharmSciTech 24(6), 1–15 (2023). •• Exhaustive summary about bilosomes and their characterizations.
    • 3. Kassem AA, Salama A, Mohsen AM. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box–Behnken design: in vitro and in vivo assessments. J. Drug Deliv. Sci. Technol. 68(1), 134–149 (2022).
    • 4. Abuallut I, Shubayli S, Qumayri G et al. Awareness and knowledge of glaucoma and its associated risk factors among adult population in the Jazan region, Saudi Arabia. Cureus 15(11), 22–34 (2023). • Exhaustive knowledge about glaucoma and its epidemiology.
    • 5. Zhang X, Wang F, Su Y. TRPV: an emerging target in glaucoma and optic nerve damage. Exp. Eye Res. 239(2), 1084–1097 (2024).
    • 6. Salowe RJ, Chen Y, Zenebe-Gete S et al. Risk factors for structural and functional progression of primary open-angle glaucoma in an African ancestry cohort. BMJ Open Ophthalmol. 8(2), 1129 (2023).
    • 7. Lu P, Liang Z, Zhang Z et al. Novel nanomicelle butenafine formulation for ocular drug delivery against fungal keratitis: in vitro and in vivo study. Eur. J. Pharm. Sci. 192(3), 1029–1037 (2024).
    • 8. Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J. Drug Deliv. Sci. Technol. 55(19), 1–62 (2020). • Comprehensive information about ocular barriers.
    • 9. Srivastava V, Chary PS, Rajana N et al. Complex ophthalmic formulation technologies: advancement and future perspectives. J. Drug Deliv. Sci. Technol. 82(1), 1–22 (2023).
    • 10. Bhosale VA, Srivastava V, Valamla B, Yadav R, Singh SB, Mehra NK. Preparation and evaluation of modified chitosan nanoparticles using anionic sodium alginate polymer for treatment of ocular disease. Pharmaceutics 14(12), 1–20 (2022).
    • 11. Zeng S, Chen Y, Zhou F et al. Recent advances and prospects for lipid-based nanoparticles as drug carriers in the treatment of human retinal diseases. Adv. Drug Deliv. Rev. 199(2), 1149–1167 (2023).
    • 12. Laddha UD, Kshirsagar SJ. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: in vitro, ex vivo and in vivo evidences. J. Drug Deliv. Sci. Technol. 61(3), 1021–1029 (2021).
    • 13. Nagpal N, Singh S, Mir PA et al. Ocuserts: a novel ocular-drug delivery method: an update. World J. Biol. Pharm. Heal. Sci. 13(1), 470–477 (2023).
    • 14. Wang X, Luan F, Yue H et al. Recent advances of smart materials for ocular drug delivery. Adv. Drug Deliv. Rev. 200(2), 1150–1175 (2023).
    • 15. Teabagy S, Wood E, Bilsbury E, Doherty S, Janardhana P, Lee DJ. Ocular immunosuppressive microenvironment and novel drug delivery for control of uveitis. Adv. Drug Deliv. Rev. 198(2), 1–11 (2023).
    • 16. Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent advances of ocular drug delivery systems: prominence of ocular implants for chronic eye diseases. Pharmaceutics 15(6), 1746–1796 (2023).
    • 17. Wei D, Pu N, Li SY, Wang YG, Tao Y. Application of iontophoresis in ophthalmic practice: an innovative strategy to deliver drugs into the eye. Drug Deliv. 30(1), 1–13 (2023).
    • 18. Vasdev N, Chaudhari N, Polaka S et al. Current progress in preservative-free topical ophthalmic formulations. J. Drug Deliv. Sci. Technol. 79(4), 1–20 (2023).
    • 19. Kaviarasi B, Rajana N, Pooja YS, Rajalakshmi AN, Singh SB, Mehra NK. Investigating the effectiveness of difluprednate-loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery. Int. J. Pharm. 640(2), 12–29 (2023).
    • 20. Alyami H, Abdelaziz K, Dahmash EZ, Iyire A. Nonionic surfactant vesicles (niosomes) for ocular drug delivery: development, evaluation and toxicological profiling. J. Drug Deliv. Sci. Technol. 60(August), 1–16 (2020).
    • 21. Srivastava V, Singh V, Kumar Khatri D, Kumar Mehra N. Recent trends and updates on ultradeformable and elastic vesicles in ocular drug delivery. Drug Discov. Today 28(8), 103647 (2023). •• Exhaustive summary about vesicular systems, significance of deformability in ocular drug delivery.
    • 22. Gupta DK, Aqil M, Ahad A et al. Tailoring of berberine loaded transniosomes for the management of skin cancer in mice. J. Drug Deliv. Sci. Technol. 60(1), 20–51 (2020).
    • 23. Bagul US, Nazirkar MV, Mane AK, Khot SV, Tagalpallewar AA, Kokare CR. Fabrication of architectonic nanosponges for intraocular delivery of brinzolamide: an insight into QbD driven optimization, in vitro characterization, and pharmacodynamics. Int. J. Pharm. 650(2), 1237–1246 (2024).
    • 24. Ma Y, Zhang Z, Yu Y et al. Nanomaterials in the diagnosis and treatment of ophthalmic diseases. Nano Today 54, 102117 (2024).
    • 25. Dubey V, Mohan P, Dangi JS, Kesavan K. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: formulation, characterization and pharmacodynamic study. Int. J. Biol. Macromol. 19(3), 1–40 (2019).
    • 26. Joshi A, Kaur J, Kulkarni R, Chaudhari R. In-vitro and ex-vivo evaluation of raloxifene hydrochloride delivery using nano-transfersome based formulations. J. Drug Deliv. Sci. Technol. 45(2), 151–158 (2018).
    • 27. Shukr MH. Novel in situ gelling ocular inserts for voriconazole-loaded niosomes: design, in vitro characterisation and in vivo evaluation of the ocular irritation and drug pharmacokinetics. J. Microencapsul. 33(1), 71–79 (2016).
    • 28. Khatoon K, Rizwanullah M, Amin S, Mir SR, Akhter S. Cilnidipine loaded transfersomes for transdermal application: formulation optimization, in-vitro and in-vivo study. J. Drug Deliv. Sci. Technol. 54(1), 1013–1034 (2019).
    • 29. Nikita, Aqil M, Sultana Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur. J. Pharm. Sci. 159, 105735 (2021).
    • 30. Franca JR, Fuscaldi LL, Ribeiro TG et al. Use of chitosan as pharmaceutical excipient in ocular drug delivery systems: sterilization and pharmacokinetics. J. Biomed. Mater. Res. Part B Appl. Biomater. 108(5), 2227–2237 (2020).
    • 31. ICCVAM (Interagency Coordinating Committee on the Validation of Alternative Methods) Recommended Test Method Protocol. Hen's egg test – chorioallantoic membrane (HET-CAM) test method. (10), 3–30 (2010).
    • 32. Ali A, Aqil M, Sarim Imam S et al. Formulation and evaluation of embelin loaded nanoliposomes: optimization, in vitro and ex vivo evaluation. J. Drug Deliv. Sci. Technol. 72(2), 1–8 (2022).
    • 33. Chen Y, Lu Y, Zhong Y, Wang Q, Wu W, Gao S. Ocular delivery of cyclosporine A based on glyceryl monooleate/poloxamer 407 liquid crystalline nanoparticles: preparation, characterization, in vitro corneal penetration and ocular irritation. J. Drug Target. 20(10), 856–863 (2012).
    • 34. Patel GC, Phan TN, Maddineni P et al. Dexamethasone-induced ocular hypertension in mice: effects of myocilin and route of administration. Am. J. Pathol. 187(4), 713–723 (2017).
    • 35. ElMeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 23(7), 2115–2123 (2016).
    • 36. Sakr MG, El-Zahaby SA, Al-Mahallawi AM, Ghorab DM. Fabrication of betaxolol hydrochloride-loaded highly permeable ocular bilosomes (HPOBs) to combat glaucoma: in vitro, ex vivo and in vivo characterizations. J. Drug Deliv. Sci. Technol. 82(4), 1043–1063 (2023).
    • 37. Wang JJ, Zhao YP, Yu AYY et al. Effect of travoprost, latanoprost and bimatoprost PGF2α treatments on the biomechanical properties of in-vivo rabbit cornea. Exp. Eye Res. 215(1), 1–15 (2022).
    • 38. Kaviarasi B, Rajana N, Pooja YS, Rajalakshmi AN, Singh SB, Mehra NK. Investigating the effectiveness of difluprednate-loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery. Int. J. Pharm. 640(1), 1–12 (2023).
    • 39. Zhou Y, Fang A, Wang F et al. Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. Chinese Chem. Lett. 31(2), 494–500 (2020).
    • 40. Sittewelle M, Royle SJ. Passive diffusion accounts for the majority of intracellular nanovesicle transport. Life Sci. Alliance 7(1), 1–14 (2024).
    • 41. Zafar A, Alruwaili NK, Imam SS et al. Development and optimization of nanolipid-based formulation of diclofenac sodium: in vitro characterization and preclinical evaluation. Pharmaceutics 14(3), 32–40 (2022).