We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Recent advances in nanomaterials for neural applications: opportunities and challenges

    Natarajan Sisubalan

    Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand

    Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand

    ,
    Ramadoss Shalini

    Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India

    ,
    Sakthivel Ramya

    Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India

    ,
    Bhagavathi Sundaram Sivamaruthi

    *Author for correspondence:

    E-mail Address: sivamaruthi.b@cmu.ac.th

    Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand

    Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand

    &
    Chaiyavat Chaiyasut

    **Author for correspondence:

    E-mail Address: chaiyavat@gmail.com

    Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand

    Published Online:https://doi.org/10.2217/nnm-2023-0261

    Nanomedicines are promising for delivering drugs to the central nervous system, though their precision is still being improved. Fortifying nanoparticles with vital molecules can interact with the blood–brain barrier, enabling access to brain tissue. This study summarizes recent advances in nanomedicine to treat neurological complications. The integration of nanotechnology into cell biology aids in the study of brain cells' interactions. Magnetic microhydrogels have exhibited superior neuron activation compared with superparamagnetic iron oxide nanoparticles and hold promise for neuropsychiatric disorders. Nanomaterials have shown notable results, such as tackling neurodegenerative diseases by hindering harmful protein buildup and regulating cellular processes. However, further studies of the safety and effectiveness of nanoparticles in managing neurological diseases and disorders are still required.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Kamat PV. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106(32), 7729–7744 (2002).
    • 2. Sisubalan N, Ramkumar VS, Pugazhendhi et al. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ. Sci. Pollut. Res. 25(11), 10482–10492 (2018).
    • 3. Rajith Kumar CR, Virupaxappa S, Betageri G et al. Photocatalytic, nitrite sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles. J. Sci. Adv. Mater. Dev. 5, 48–55 (2020).
    • 4. Vidu R, Rahman M, Mahmoudi M et al. Nanostructures: a platform for brain repair and augmentation. Front. Syst. Neurosci. 8, 91 (2014).
    • 5. Freitas RA Jr. Nanotechnology, nanomedicine and nanosurgery. Int. J. Surg. 3(4), 243–246 (2005).
    • 6. Feynman RP. There's plenty of room at the bottom (data storage). J. Microelectromech. Syst. 1(1), 60–66 (1992).
    • 7. Shabani L, Abbasi M, Azarnew Z et al. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed. Eng. Online 22(1), 1–41 (2023).
    • 8. Shah S. The nanomaterial toolkit for neuroengineering. Nano Converg. 3, 25 (2016).
    • 9. Jamwal D, Sharma A, Kanwar R et al. The multifaceted dimensions of potent nanostructures: a comprehensive review. Mater. Chem. Front. 5(7), 2967–2995 (2021).
    • 10. Gao W, Hu CM, Fang RH et al. Liposome-like nanostructures for drug delivery. J. Mater. Chem. B 1(48), 6569–6585 (2013).
    • 11. Chenthamara D, Subramaniam S, Ramakrishnan SG et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23(1), 1–29 (2019).
    • 12. Pampaloni NP, Giugliano M, Scaini D et al. Advances in nano neuroscience: from nanomaterials to nanotools. Front. Neurosci. 12, 953 (2019).
    • 13. Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature 407(6807), 963–970 (2000).
    • 14. Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res. Bull. 49(6), 377–391 (1999).
    • 15. Silver J, Miller JH. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5(2), 146–156 (2004).
    • 16. Agrahari V, Burnouf PA, Burnouf T et al. Nanoformulation properties, characterization, and behavior in complex biological matrices: challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv. Drug Deliv. Rev. 148, 146–180 (2019).
    • 17. Cascione M, De Matteis V, Leporatti S et al. The new frontiers in neurodegenerative diseases treatment: liposomal-based strategies. Front. Bioeng. Biotechnol. 8, 566767 (2020).
    • 18. Li J, Wei Y, Zhang C et al. Cell-membrane-coated nanoparticles for targeted drug delivery to the brain for the treatment of neurological diseases. Pharmaceutics 15(2), 621 (2023).
    • 19. Qiao L, Chen Y, Song X, Dou X, Xu C. Selenium nanoparticles-enriched Lactobacillus casei ATCC 393 prevents cognitive dysfunction in mice through modulating microbiota-gut-brain axis. Int. J. Nanomed. 17, 4807–4827 (2022).
    • 20. Jang YO, Ahn HS, Dao TN et al. Magnetic transferrin nanoparticles (MTNs) assay as a novel isolation approach for exosomal biomarkers in neurological diseases. Biomater. Res. 27(1), 1–9 (2023). •• Reports a magnetic transferrin nanoparticle assay, which combined transferrin and magnetic nanoparticles to isolate brain-derived blood exosomes from clinical samples.
    • 21. Yang J, Luly KM, Green JJ. Nonviral nanoparticle gene delivery into the CNS for neurological disorders and brain cancer applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15(2), e1853 (2023).
    • 22. Xue L, Ye Q, Wu L et al. Magneto-mechanical effect of magnetic microhydrogel for improvement of magnetic neuro-stimulation. Nano Res. 16, 7393–7404 (2023). • Demonstrates magnetic microhydrogels as a powerful tool for neurostimulation.
    • 23. Pardo A, Gómez-Florit M, Barbosa S et al. Magnetic nanocomposite hydrogels for tissue engineering: design concepts and remote actuation strategies to control cell fate. ACS Nano 15(1), 175–209 (2021).
    • 24. Tay A, Kunze A, Murray C et al. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 10(2), 2331–2341 (2016).
    • 25. Tay A, Sohrabi A, Poole K et al. A 3D magnetic hyaluronic acid hydrogel for magneto-mechanical neuromodulation of primary dorsal root ganglion neurons. Adv. Mater. 30(29), 1800927 (2018).
    • 26. Lee JU, Shin W, Lim Y et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20(7), 1029–1036 (2021).
    • 27. Issa B, Obaidat IM, Albiss BA et al. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266–21305 (2013).
    • 28. Xue L, Sun J. Magnetic hydrogels with ordered structure for biomedical applications. Front. Chem. 10, 1040492 (2022).
    • 29. Gu N, Zhang Z, Li Y. Adaptive iron-based magnetic nanomaterials of high performance for biomedical applications. Nano Res. 15, 1–17 (2022).
    • 30. Zhou H, Mayorga-Martinez CC, Pané S et al. Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021).
    • 31. Liu H, Sun J, Wang H et al. Quantitative evaluation of the total magnetic moments of colloidal magnetic nanoparticles: a kinetics-based method. Chemphyschem 16(8), 1598–1602 (2015).
    • 32. Wang H, Ge Y, Sun J et al. Magnetic sensor based on image processing for dynamically tracking magnetic moment of single magnetic mesenchymal stem cell. Biosens. Bioelectron. 169, 112593 (2020).
    • 33. Bayat M, Zabihi S, Karbalaei N et al. Time-dependent effects of platelet-rich plasma on the memory and hippocampal synaptic plasticity impairment in vascular dementia induced by chronic cerebral hypoperfusion. Brain Res. Bull. 164, 299–306 (2020).
    • 34. Zhong G, Yang Z, Jiang T. Precise modulation strategies for transcranial magnetic stimulation: advances and future directions. Neurosci. Bull. 37(12), 1718–1734 (2021).
    • 35. Sánchez CC, García JJ, Cabello MR et al. Design of coils for lateralized TMS on mice. J. Neural Eng. 17(3), 036007 (2020).
    • 36. Oliveria SF, Rodriguez RL, Bowers D et al. Safety and efficacy of dual-lead thalamic deep brain stimulation for patients with treatment-refractory multiple sclerosis tremor: a single-centre, randomised, single-blind, pilot trial. Lancet Neurol. 16(9), 691–700 (2017).
    • 37. Scangos KW, Khambhati AN, Daly PM et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27(10), 1696–1700 (2021).
    • 38. Bestmann S, Baudewig J, Siebner HR et al. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur. J. Neurosci. 19(7), 1950–1962 (2004).
    • 39. Manita S, Suzuki T, Inoue M et al. Paired-pulse ratio of synaptically induced transporter currents at hippocampal CA1 synapses is not related to release probability. Brain Res. 1154, 71–79 (2007).
    • 40. Lu Q, Wu F, Jiao J et al. Selective activation of ABCA1/ApoA1 signaling in the V1 by magnetoelectric stimulation ameliorates depression via regulation of synaptic plasticity. iScience 25(5), 104201 (2022).
    • 41. Björklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3(6), 537–544 (2000).
    • 42. Fry EJ. Central nervous system regeneration: mission impossible? Clin. Exp. Pharmacol. Physiol. 28(4), 253–258 (2001).
    • 43. Chawla M, Kumar R, Siril PF. High catalytic activities of palladium nanowires synthesized using liquid crystal templating approach. J. Mol. Catal. A Chem. 423, 126–134 (2016).
    • 44. Dutt S, Kumar R, Siril PF. Green synthesis of a palladium–polyaniline nanocomposite for green Suzuki–Miyaura coupling reactions. RSC Adv. 5(43), 33786–33791 (2015).
    • 45. Kumar R, Siril PF, Javid F. Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C 69, 1335–1344 (2016).
    • 46. Kumar R, Singh A, Garg N. Acoustic cavitation-assisted formulation of solid lipid nanoparticles using different stabilizers. ACS Omega 4(8), 13360–13370 (2019). •• Describes the formulation of solid lipid nanoparticles using different stabilizers.
    • 47. Kumar R. Lipid-based nanoparticles for drug-delivery systems. In: Nanocarriers for Drug Delivery. Nanoscience and Nanotechnology in Drug Delivery (1st Edition). Mohapatra SSRanjan SDasgupta NMishra RKThomas S (Eds). Elsevier, Amsterdam, Netherlands, 249–284 (2019).
    • 48. Kumar R, Singh A, Garg N. Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. J. Drug Deliv. Sci. Technol. 54, 101277 (2019). • Explains the nanoparticle as controlled delivery of poorly water-soluble drugs.
    • 49. Kumar R, Singh A, Sharma K et al. Preparation, characterization and in vitro cytotoxicity of fenofibrate and nabumetone loaded solid lipid nanoparticles. Mater. Sci. Eng. C 106, 110184 (2020).
    • 50. Xia Y. Nanomaterials at work in biomedical research. Nat. Mater. 7(10), 758–760 (2008).
    • 51. Collazo ER. Repair of stump neuroma using AxoGuard® nerve protector and Avance® nerve graft in the lower extremity. Ortho. Rheum. Open Access J. 1(3), 69–70 (2015).
    • 52. Bibbo C, Rodrigues-Colazzo E, Finzen AG. Superficial peroneal nerve to deep peroneal nerve transfer with allograft conduit for neuroma in continuity. J. Foot Ankle Surg. 57(3), 514–517 (2018).
    • 53. Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7(1), 65–74 (2006).
    • 54. Suh WH, Suslick KS, Stucky GD et al. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87(3), 133–170 (2009).
    • 55. Seidlits SK, Lee JY, Schmidt CE. Nanostructured scaffolds for neural applications. Nanomedicine 3, 183–199 (2008).
    • 56. Baranes K, Shevach M, Shefi O, Dvir T. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett. 16(5), 2916–2920 (2016).
    • 57. Cheng Z, Yan X, Sun X et al. Tumor molecular imaging with nanoparticles. Engineering 2(1), 132–140 (2016).
    • 58. Adams JY, Johnson M, Sato M et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat. Med. 8(8), 891–896 (2002).
    • 59. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003).
    • 60. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92(2), 897–965 (2012).
    • 61. Koo H, Huh MS, Sun IC et al. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res. 44(10), 1018–1028 (2011).
    • 62. Ullman EF, Schwarzberg M, Rubenstein KE. Fluorescent excitation transfer immunoassay. A general method for determination of antigens. J. Biol. Chem. 251(14), 4172–4178 (1976).
    • 63. Wiwanitkit V. Glomerular pore size corresponding to albumin molecular size, an explanation for underlying structural pathology leading to albuminuria at nanolevel. Ren. Fail. 28(1), 101 (2006).
    • 64. Degani H, Chetrit-Dadiani M, Bogin L, Furman-Haran E. Magnetic resonance imaging of tumor vasculature. Thromb. Haemost. 89(1), 25–33 (2003).
    • 65. Kherlopian AR, Song T, Duan Q et al. A review of imaging techniques for systems biology. BMC Syst. Biol. 2, 74 (2008).
    • 66. Upputuri PK, Sivasubramanian K, Mark CS et al. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed. Res. Int. 2015, 783983 (2015).
    • 67. Yun SH, Kwok SJ. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017).
    • 68. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007).
    • 69. Choi W, Oh D, Kim C. Practical photoacoustic tomography: realistic limitations and technical solutions. J. Appl. Phys. 127(23), 230903 (2020).
    • 70. Jo S, Sun IC, Ahn CH et al. Recent trend of ultrasound-mediated nanoparticle delivery for brain imaging and treatment. ACS Appl. Mater. Interfaces 15(1), 120–137 (2022).
    • 71. Kang H, Lee SW, Park SM et al. Real-time functional optical-resolution photoacoustic microscopy using high-speed alternating illumination at 532 and 1064 nm. J. Biophotonics 11(3), e201700210 (2018).
    • 72. Jathoul AP, Laufer J, Ogunlade O et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9(4), 239–246 (2015).
    • 73. Fan Q, Cheng K, Yang Z et al. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv. Mater. 27(5), 843–847 (2015).
    • 74. Jiang Y, Cui D, Fang Y et al. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 145, 168–177 (2017).
    • 75. Zhen X, Zhang J, Huang J et al. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew. Chem. 130(26), 7930–7934 (2018).
    • 76. Zhen X, Pu K, Jiang X. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near-infrared construction. Small 17(6), 2004723 (2021).
    • 77. Xu S, Duan Y, Liu B. Precise molecular design for high-performance luminogens with aggregation-induced emission. Adv. Mater. 32(1), 1903530 (2020).
    • 78. Feng G, Zhang GQ, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev. 49(22), 8179–8234 (2020).
    • 79. Duan Y, Hu D, Guo B et al. Nanostructural control enables optimized photoacoustic–fluorescence–magnetic resonance multimodal imaging and photothermal therapy of brain tumor. Adv. Funct. Mater. 30(1), 1907077 (2020).
    • 80. Changalvaie B, Han S, Moaseri E et al. Indocyanine green J aggregates in polymersomes for near-infrared photoacoustic imaging. ACS Appl. Mater. Interfaces 11(50), 46437–46450 (2019).
    • 81. Wang L, Xie S, Wang Z et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4(2), 159–171 (2020).
    • 82. De La Zerda A, Zavaleta C, Keren S et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3(9), 557–562 (2008).
    • 83. Wu L, Wang C, Li Y. Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine 17(21), 1567–1583 (2022).
    • 84. Neuschmelting V, Harmsen S, Beziere N et al. Dual-modality surface-enhanced resonance Raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation. Small 14(23), 1800740 (2018).
    • 85. Zhan C, Huang Y, Lin G et al. A gold nanocage/cluster hybrid structure for whole-body multispectral optoacoustic tomography imaging, EGFR inhibitor delivery, and photothermal therapy. Small 15(33), 1900309 (2019).
    • 86. Cai K, Zhang W, Foda et al. Miniature hollow gold nanorods with enhanced effect for in vivo photoacoustic imaging in the NIR-II window. Small 16(37), 2002748 (2020).
    • 87. Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 10(2), 299–320 (2015).
    • 88. Lerouge F, Ong E, Rositi H et al. In vivo targeting and multimodal imaging of cerebral amyloid-β aggregates using hybrid GdF3 nanoparticles. Nanomedicine 17(29), 2173–2187 (2022). •• A new multimodal imaging agent targeting amyloid-β plaques in Alzheimer's disease is demonstrated.
    • 89. Guo B, Chen J, Chen N et al. High-resolution 3D NIR-II photoacoustic imaging of cerebral and tumor vasculatures using conjugated polymer nanoparticles as contrast agent. Adv. Mater. 31(25), 1808355 (2019).
    • 90. Jiang Y, Upputuri PK, Xie C et al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett. 17(8), 4964–4969 (2017).
    • 91. Pu K, Shuhendler AJ, Jokerst JV et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9(3), 233–239 (2014).
    • 92. Lyu Y, Fang Y, Miao Q et al. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 10(4), 4472–4481 (2016).
    • 93. Foulkes R, Man E, Thind J et al. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater. Sci. 8(17), 4653–4664 (2020).
    • 94. Ceña V, Játiva P. Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine 13(13), 1513–1516 (2018).
    • 95. Steinberg I, Huland DM, Vermesh O et al. Photoacoustic clinical imaging. Photoacoustics 14, 77–98 (2019).
    • 96. Malar DS, Prasanth MI, Brimson JM et al. Neuroprotective properties of green tea (Camellia sinensis) in Parkinson's disease: a review. Molecules 25(17), 3926 (2020).
    • 97. Tilleux S, Hermans E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J. Neurosci. Res. 85(10), 2059–2070 (2007).
    • 98. Zhang W, Mehta A, Tong Z et al. Development of polymeric nanoparticles for blood–brain barrier transfer – strategies and challenges. Adv. Sci. 8(10), 2003937 (2021).
    • 99. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7(1), 41–53 (2006).
    • 100. Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64(7), 640–665 (2012).
    • 101. Pinheiro RG, Coutinho AJ, Pinheiro M et al. Nanoparticles for targeted brain drug delivery: what do we know? Int. J. Mol. Sci. 22(21), 11654 (2021).
    • 102. Luo Y, Yang H, Zhou YF et al. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J. Control. Rel. 317, 195–215 (2020).
    • 103. Kassem LM, Ibrahim NA, Farhana AS. Nanoparticle therapy is a promising approach in the management and prevention of many diseases: does it help in curing Alzheimer disease? J. Nanotechnol. 2020, 8147080 (2020).
    • 104. Pichla M, Bartosz G, Sadowska-Bartosz I. The antiaggregative and antiamyloidogenic properties of nanoparticles: a promising tool for the treatment and diagnostics of neurodegenerative diseases. Oxid. Med. Cell. Longev. 2020, 3534570 (2020).
    • 105. Lin J, Li H, Guo J et al. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer's disease. Nanomedicine 17(17), 1191–1211 (2022).
    • 106. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133–149 (2008).
    • 107. Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013, 238428 (2013).
    • 108. Das S, Dowding JM, Klump KE et al. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8(9), 1483–1508 (2013).
    • 109. Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531–545 (2002).
    • 110. Lubich C, Allacher P, de la Rosa M et al. The mystery of antibodies against polyethylene glycol (PEG) – what do we know? Pharm. Res. 33, 2239–2249 (2016).
    • 111. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013).
    • 112. Mohammadpour R, Dobrovolskaia MA, Cheney DL et al. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 144, 112–132 (2019).
    • 113. Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: are we there yet? Int. J. Mol. Sci. 22(1), 385 (2020).
    • 114. Nemmar A, Yuvaraju P, Beegam S et al. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int. J. Nanomed. 11, 919–928 (2016).
    • 115. Alshehri R, Ilyas AM, Hasan A et al. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J. Med. Chem. 59(18), 8149–8167 (2016).
    • 116. Duan L, Li X, Ji R et al. Nanoparticle-based drug delivery systems: an inspiring therapeutic strategy for neurodegenerative diseases. Polymers (Basel) 15(9), 2196 (2023).