We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Metronidazole-loaded polydopamine nanomedicine with antioxidant and antibacterial bioactivity for periodontitis

    Meng Yan‡

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Wen Liang‡

    Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Lan Du

    Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China

    ,
    Rongjuan Guo

    Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China

    ,
    Yu Cao

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China

    ,
    Sheng Ni

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China

    ,
    Yuan Zhong

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China

    ,
    Kun Zhang

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China

    Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China

    ,
    Kai Qu

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China

    Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China

    ,
    Xian Qin

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China

    Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, China

    ,
    Liang Chen

    *Author for correspondence:

    E-mail Address: chenliang@hospital.cqmu.edu.cn

    Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China

    &
    Wei Wu

    **Author for correspondence:

    E-mail Address: david2015@cqu.edu.cn

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China

    Published Online:https://doi.org/10.2217/nnm-2023-0245

    Aim: This study focused on treating periodontitis with bacterial infection and local over accumulation of reactive oxygen species. Materials & methods: Polydopamine nanoparticles (PDA NPs) were exploited as efficient carriers for encapsulated metronidazole (MNZ). The therapeutic efficacy and biocompatibility of PDA@MNZ NPs were investigated through both in vitro and in vivo studies. Results: The nanodrug PDA@MNZ NPs were successfully fabricated, with well-defined physicochemical characteristics. In vitro, the PDA@MNZ NPs effectively eliminated intracellular reactive oxygen species and inhibited the growth of Porphyromonas gingivalis. Moreover, the PDA@MNZ NPs exhibited synergistic therapy for periodontitisin in vivo. Conclusion: PDA@MNZ NPs were confirmed with exceptional antimicrobial and antioxidant functions, offering a promising avenue for synergistic therapy in periodontitis.

    Tweetable abstract

    A nanotherapeutic composed of dopamine nanoparticles loaded with metronidazole exhibited antimicrobial and antioxidative activities, presenting a safe and effective approach to periodontitis.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat. Rev. Dis. Primers 3, 17038 (2017). • Review of periodontal diseases.
    • 2. Peres MA, Macpherson LMD, Weyant RJ et al. Oral diseases: a global public health challenge. Lancet 394(10194), 249–260 (2019).
    • 3. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030. Geneva: World Health Organization (2022). Licence: CC BY-NC-SA 3.0 IGO.
    • 4. Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis – a comprehensive review. J. Clin. Periodontol. 44(S18), S94–S105 (2017).
    • 5. Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. J. Dent. Res. 93(11), 1045–1053 (2014).
    • 6. Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21(7), 426–440 (2021).
    • 7. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet 366(9499), 1809–1820 (2005). • Review of periodontal diseases.
    • 8. Hasan A, Palmer RM. A clinical guide to periodontology: pathology of periodontal disease. Br. Dent. J. 216(8), 457–461 (2014).
    • 9. Wade WG. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? J. Clin. Periodontol. 38(s11), 7–16 (2011).
    • 10. Abusleme L, Hoare A, Hong BY, Diaz PI. Microbial signatures of health, gingivitis, and periodontitis. Periodontol. 2000 86(1), 57–78 (2021).
    • 11. Sakamoto M, Umeda M, Benno Y. Molecular analysis of human oral microbiota. J. Periodont. Res. 40(3), 277–285 (2005).
    • 12. Caffesse RG, Echeverría JJ. Treatment trends in periodontics. Periodontol. 2000 79(1), 7–14 (2019).
    • 13. Langer R. New methods of drug delivery. Science 249(4976), 1527–1533 (1990).
    • 14. Hecht DW. Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin. Infect. Dis. 39(1), 92–97 (2004).
    • 15. Herrera D, Alonso B, León R, Roldán S, Sanz M. Antimicrobial therapy in periodontitis: the use of systemic antimicrobials against the subgingival biofilm. J. Clin. Periodontol. 35(Suppl. 8), 45–66 (2008).
    • 16. Loesche WJ, Giordano JR, Hujoel P, Schwarcz J, Smith BA. Metronidazole in periodontitis: reduced need for surgery. J. Clin. Periodontol. 19(2), 103–112 (1992). • Review of metronidazole in periodontitis.
    • 17. Dziedzic A, Wojtyczka RD. Periodontology: antibiotics protocol. Br. Dent. J. 217(12), 660–660 (2014).
    • 18. Serbanescu MA, Oveisi M, Sun C, Fine N, Bosy A. Glogauer M Metronidazole enhances killing of Porphyromonas gingivalis by human PMNs. Front. Oral Health 3, 933997 (2022).
    • 19. Ardila CM, Bedoya-García JA. Antimicrobial resistance of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in periodontitis patients. J. Glob. Antimicrob. Resist. 22, 215–218 (2020).
    • 20. Tamaki N, Cristina Orihuela-Campos R, Inagaki Y, Fukui M, Nagata T, Ito HO. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic. Biol. Med. 75, 222–229 (2014).
    • 21. Wei Y, Deng Y, Ma S et al. Local drug delivery systems as therapeutic strategies against periodontitis: a systematic review. J. Control. Rel. 333, 269–282 (2021). • Review of local drug-delivery systems for periodontitis.
    • 22. Cao H, Yang L, Tian R, Wu H, Gu Z, Li Y. Versatile polyphenolic platforms in regulating cell biology. Chem. Soc. Rev. 51(10), 4175–4198 (2022).
    • 23. Gómez-Florit M, Monjo M, Ramis JM. Identification of quercitrin as a potential therapeutic agent for periodontal applications. J. Periodontol. 85(7), 966–974 (2014).
    • 24. Zhou T, Chen D, Li Q, Sun X, Song Y, Wang C. Curcumin inhibits inflammatory response and bone loss during experimental periodontitis in rats. Acta Odontol. Scand. 71(2), 349–356 (2013).
    • 25. López-Valverde N, López-Valverde A, Montero J, Rodríguez C, Macedo de Sousa B, Aragoneses JM. Antioxidant, anti-inflammatory and antimicrobial activity of natural products in periodontal disease: a comprehensive review. Front. Bioeng. Biotechnol. 11, 1226907 (2023).
    • 26. Hirasawa M, Takada K, Makimura M, Otake S. Improvement of periodontal status by green tea catechin using a local delivery system: a clinical pilot study. J. Periodontal Res. 37(6), 433–438 (2002).
    • 27. Shahzad M, Millhouse E, Culshaw S, Edwards CA, Ramage G, Combet E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct. 6(3), 719–729 (2015).
    • 28. Tian M, Chen G, Xu J et al. Epigallocatechin gallate-based nanoparticles with reactive oxygen species scavenging property for effective chronic periodontitis treatment. Chem. Eng. J. 433, 132197 (2022).
    • 29. Jayusman PA, Nasruddin NS, Mahamad Apandi NI, Ibrahim N, Budin SB. Therapeutic potential of polyphenol and nanoparticles mediated delivery in periodontal inflammation: a review of current trends and future perspectives. Front. Pharmacol. 13, 847702 (2022).
    • 30. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007).
    • 31. Yang P, Gu Z, Zhu F, Li Y. Structural and functional tailoring of melanin-like polydopamine radical scavengers. CCS Chemistry 2(2), 128–138 (2020).
    • 32. Kaushik NK, Kaushik N, Pardeshi S, Sharma JG, Lee SH, Choi EH. Biomedical and clinical importance of mussel-inspired polymers and materials. Mar. Drugs 13(11), 6792–6817 (2015).
    • 33. Cheng W, Zeng X, Chen H et al. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 13(8), 8537–8565 (2019).
    • 34. Bai B, Gu C, Lu X et al. Polydopamine functionalized mesoporous silica as ROS-sensitive drug delivery vehicles for periodontitis treatment by modulating macrophage polarization. Nano Res. 14(12), 4577–4583 (2021). • Polydopamine-functionalized mesoporous silica nanoparticles harness the antioxidative activity of polydopamine to effectively eliminate excessive reactive oxygen species.
    • 35. Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 12(9), 8882–8892 (2018). •• Polydopamine nanoparticles exhibit high efficiency as scavengers for reactive oxygen species in the context of periodontal disease.
    • 36. Zou Y, Wu T, Li N, Guo X, Li Y. Photothermal-enhanced synthetic melanin inks for near-infrared imaging. Polymer 186, 122042 (2020).
    • 37. Li Z, Wang T, Zhu F, Wang Z, Li Y. Bioinspired fluorescent dihydroxyindoles oligomers. Chin. Chem. Lett. 31(3), 783–786 (2020).
    • 38. Liu H, Qu X, Tan H et al. Role of polydopamine's redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomater. 88, 181–196 (2019). • Review of polydopamine's redox activity.
    • 39. Liu Y, Ai K, Ji X et al. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 139(2), 856–862 (2017).
    • 40. Zhao H, Zeng Z, Liu L et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale 10(15), 6981–6991 (2018).
    • 41. Zhang J, Fu Y, Yang P, Liu X, Li Y, Gu Z. ROS scavenging biopolymers for anti-inflammatory diseases: classification and formulation. Adv. Mater. Interfaces 7(16), 2000632 (2020).
    • 42. Wang X, Zhao H, Liu Z et al. Polydopamine nanoparticles as dual-task platform for osteoarthritis therapy: a scavenger for reactive oxygen species and regulator for cellular powerhouses. Chem. Eng. J. 417, 129284 (2021).
    • 43. Kunrath MF, Shah FA, Dahlin C. Bench-to-bedside: feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. Mater. Today Bio. 18, 100540 (2023).
    • 44. Saadi-Thiers K, Huck O, Simonis P et al. Periodontal and systemic responses in various mice models of experimental periodontitis: respective roles of inflammation duration and Porphyromonas gingivalis infection. J. Periodontol. 84(3), 396–406 (2013).
    • 45. Marchesan J, Girnary MS, Jing L et al. An experimental murine model to study periodontitis. Nat. Protoc. 13(10), 2247–2267 (2018).
    • 46. Lin P, Niimi H, Ohsugi Y et al. Application of ligature-induced periodontitis in mice to explore the molecular mechanism of periodontal disease. Int. J. Mol. Sci. 22(16), 8900 (2021).
    • 47. Abe T, Hajishengallis G. Optimization of the ligature-induced periodontitis model in mice. J. Immunol. Methods 394(1–2), 49–54 (2013).
    • 48. Ju KY, Lee Y, Lee S, Park SB, Lee JK. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 12(3), 625–632 (2011).
    • 49. Ali AE, Elasala GS, Ibrahim RS. Synthesis, characterization, spectral, thermal analysis and biological activity studies of metronidazole complexes. J. Mol. Struct. 1176, 673–684 (2019).
    • 50. Sczepanik FSC, Grossi ML, Casati M et al. Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontol. 2000 84(1), 45–68 (2020).
    • 51. Wang Y, Andrukhov O, Rausch-Fan X. Oxidative stress and antioxidant system in periodontitis. Front. Physiol. 8, 910 (2017).
    • 52. Matthews JB, Wright HJ, Roberts A, Cooper PR, Chapple ILC. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clin. Exp. Immunol. 147(2), 255–264 (2007).
    • 53. Buczko P, Zalewska A, Szarmach I. Saliva and oxidative stress in oral cavity and in some systemic disorders. J. Physiol. Pharmacol. 66(1), 3–9 (2015).
    • 54. Cheng Z, Meade J, Mankia K, Emery P, Devine DA. Periodontal disease and periodontal bacteria as triggers for rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 31(1), 19–30 (2017).
    • 55. Sui L, Wang J, Xiao Z, Yang Y, Yang Z, Ai K. ROS-scavenging nanomaterials to treat periodontitis. Front. Chem. 8, 595530 (2020).
    • 56. Chen E, Wang T, Tu Y et al. ROS-scavenging biomaterials for periodontitis. J. Mater. Chem. B 11(3), 482–499 (2023).
    • 57. Iqbal Z, Lai EPC, Avis TJ. Antimicrobial effect of polydopamine coating on Escherichia coli. J. Mater. Chem. 22(40), 21608–21612 (2012).
    • 58. Fu Y, Yang L, Zhang J et al. Polydopamine antibacterial materials. Mater. Horizons 8(6), 1618–1633 (2021).
    • 59. Su L, Yu Y, Zhao Y, Liang F, Zhang X. Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Sci. Rep. 6(1), 24420 (2016).