We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

B cell-targeted polylactic acid nanoparticles as platform for encapsulating jakinibs: potential therapeutic strategy for systemic lupus erythematosus

    Karen Álvarez

    Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52–21 & Calle 62 No. 52–59, Torre 1, Lab. 510; Medellín, Colombia

    ,
    Juliana Palacio

    Grupo De Investigación Ciencia de Los Materiales, Instituto de Química, Universidad de Antioquia, Calle 70 No. 52–21 & Calle 62 No. 52–59, Torre 1, Lab. 310; Medellín, Colombia

    Escuela de Química, Universidad Nacional de Colombia, Sede Medellín, Carrera 65A No. 59A-110, Medellín, Colombia

    ,
    Natalia A Agudelo

    Grupo de Investigación e Innovación en Formulaciones Químicas, Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Envigado, Colombia

    ,
    Cristian A Anacona

    Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52–21 & Calle 62 No. 52–59, Torre 1, Lab. 510; Medellín, Colombia

    ,
    Diana Castaño

    Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52–21 & Calle 62 No. 52–59, Torre 1, Lab. 510; Medellín, Colombia

    ,
    Gloria Vásquez

    Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52–21 & Calle 62 No. 52–59, Torre 1, Lab. 510; Medellín, Colombia

    &
    Mauricio Rojas

    *Author for correspondence: Tel.: +57 4219 6463;

    E-mail Address: mauricio.rojas@udea.edu.co

    Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Universidad de Antioquia, Calle 70 No. 52–21 & Calle 62 No. 52–59, Torre 1, Lab. 510; Medellín, Colombia

    Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia, Calle 62 No. 52–59, Medellín, 050010, Colombia

    Published Online:https://doi.org/10.2217/nnm-2023-0241

    Background: B cells are pivotal in systemic lupus erythematosus and autoimmune disease pathogenesis. Materials & methods: To address this, Nile Red-labeled polylactic acid nanoparticles (NR-PLA NPs) loaded with the JAK inhibitor baricitinib (BARI), specifically targeting JAK1 and JAK2 in B cells, were developed. Results: Physicochemical characterization confirmed NP stability over 30 days. NR-PLA NPs were selectively bound and internalized by CD19+ B cells, sparing other leukocytes. In contrast to NR-PLA NPs, BARI-NR-PLA NPs significantly dampened B-cell activation, proliferation and plasma cell differentiation in healthy controls. They also inhibited key cytokine production. These effects often surpassed those of equimolar-free BARI. Conclusion: This study underscores the potential of PLA NPs to regulate autoreactive B cells, offering a novel therapeutic avenue for autoimmune diseases.

    Plain language summary

    In this study, a new approach to treating autoimmune diseases, particularly systemic lupus erythematosus, was investigated by focusing on a type of immune cell called B cells.

    Special nanoparticles (NPs) labeled with Nile Red (NR) and made from polylactic acid (PLA) were created. These NPs were loaded with a drug called baricitinib (BARI), which targets specific proteins (JAK1 and JAK2) in B cells. This was done to determine if these NPs could help control the behavior of B cells, which are important in autoimmune diseases. First, these NPs remained stable for a long time (30 days). The NR-labeled PLA NPs (NR-PLA NPs) were also good at attaching to and entering a specific type of B cell called CD19+ B cells while leaving other types of immune cells alone. The use of NR-PLA NPs loaded with BARI produced exciting results. These NPs were better at reducing the activity, growth and transformation of B cells into plasma cells compared with the drug BARI by itself. They also stopped the production of certain immune system signals called cytokines, which are usually overactive in autoimmune diseases. This work suggests that PLA NPs could be a promising way to control overactive B cells that contribute to autoimmune diseases like systemic lupus erythematosus. This could open a new and exciting path for developing treatments for these conditions.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater. 137, 1–19 (2022).
    • 2. Salles G, Barrett M, Foà R et al. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv. Ther. 34(10), 2232–2273 (2017).
    • 3. McManigle W, Youssef A, Sarantopoulos S. B cells in chronic graft-versus-host disease. Hum. Immunol. 80(6), 393–399 (2019).
    • 4. Allen CDC. Features of B cell responses relevant to allergic disease. J. Immunol. 208(2), 257–266 (2022).
    • 5. Wu F, Gao J, Kang J et al. B cells in rheumatoid arthritis: pathogenic mechanisms and treatment prospects. Front. Immunol. 12, 750753–750767 (2021).
    • 6. Comi G, Bar-Or A, Lassmann H et al. Role of B cells in multiple sclerosis and related disorders. Ann. Neurol. 89(1), 13–23 (2021).
    • 7. Nashi E, Wang Y, Diamond B. The role of B cells in lupus pathogenesis. Int. J. Biochem. Cell Biol. 42(4), 543–550 (2010).
    • 8. Parodis I, Gatto M, Sjöwall C. B cells in systemic lupus erythematosus: targets of new therapies and surveillance tools. Front. Med. (Lausanne) 9, 952304 (2022).
    • 9. Yarchoan M, Ho WJ, Mohan A et al. Effects of B cell-activating factor on tumor immunity. JCI Insight 5(10), 1–16 (2020).
    • 10. Chen GM, Melenhorst JJ, Tan K. B cell targeting in CAR T cell therapy: side effect or driver of CAR T cell function? Sci. Transl. Med. 14(650), eabn3353 (2022).
    • 11. Mackensen A, Müller F, Mougiakakos D et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28(10), 2124–2132 (2022).
    • 12. Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton's tyrosine kinase in B cell malignancies. Nat. Rev. Cancer 14(4), 219–232 (2014).
    • 13. Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr. Opin. Pharmacol. 23, 82–91 (2015).
    • 14. Moura RA, Fonseca JE. JAK inhibitors and modulation of B cell immune responses in rheumatoid arthritis. Front. Med. (Lausanne) 7, 607725 (2020). • Described the effects of JAK inhibitors on B-cell immune responses in rheumatoid arthritis.
    • 15. Syeed N. JAK2 and beyond: mutational study of JAK2V617 in myeloproliferative disorders and haematological malignancies in Kashmiri population. Asian Pac. J. Cancer Prev. 20(12), 3611–3615 (2019).
    • 16. Jeong EG, Kim MS, Nam HK et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin. Cancer Res. 14(12), 3716–3721 (2008).
    • 17. Milner JD, Vogel TP, Forbes L et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125(4), 591–599 (2015).
    • 18. Remmers EF, Plenge RM, Lee AT et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357(10), 977–986 (2007).
    • 19. Bolin K, Sandling JK, Zickert A et al. Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLOS ONE 8(12), e84450 (2013).
    • 20. Beatty GL, Shahda S, Beck T et al. A phase Ib/II study of the JAK1 inhibitor, itacitinib, plus. Oncologist 24(1), 14–e10 (2019).
    • 21. Sanchez GAM, Reinhardt A, Ramsey S et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Invest. 128(7), 3041–3052 (2018).
    • 22. Schroeder MA, Khoury HJ, Jagasia M et al. A phase 1 trial of itacitinib, a selective JAK1 inhibitor, in patients with acute graft-versus-host disease. Blood Adv. 4(8), 1656–1669 (2020).
    • 23. Wallace DJ, Furie RA, Tanaka Y et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392(10143), 222–231 (2018).
    • 24. Lee EB, Fleischmann R, Hall S et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370(25), 2377–2386 (2014).
    • 25. O'Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann. Rheum. Dis. 72(Suppl. 2), ii111–115 (2013).
    • 26. Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target Ther. 4, 33 (2019).
    • 27. Aringer M, Costenbader K, Daikh D et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 71(9), 1400–1412 (2019).
    • 28. Squires TM, Mason TG. Fluid mechanics of microrheology. Ann. Rev. Fluid Mech. 42(1), 413–438 (2009).
    • 29. Ansari MJ, Alshahrani SM. Nano-encapsulation and characterization of baricitinib using poly-lactic-glycolic acid co-polymer. Saudi Pharm. J. 27(4), 491–501 (2019). • Baricitinb encapsulation improved its solubility and bioavailability.
    • 30. Echeverri-Cuartas CE, Agudelo NA, Gartner C. Chitosan-PEG-folate-Fe(III) complexes as nanocarriers of epigallocatechin-3-gallate. Int. J. Biol. Macromol. 165(Pt. B), 2909–2919 (2020).
    • 31. Monsalve Carmona Y, Sierra L, Lopez B. Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromol. Symp. 354, 91–98 (2015).
    • 32. Fornaguera C, Solans C. Analytical methods to characterize and purify polymeric nanoparticles. Int. J. Polym. Sci. 2018, 6387826 (2018).
    • 33. Mohanraj VJ, Chen Y. Nanoparticles–a review. Trop. J. Pharm. Res. 5, 561–573 (2007).
    • 34. Danaei M, Dehghankhold M, Ataei S et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 1–17 (2018).
    • 35. Palacio J, Orozco V, Lopez B. Effect of the molecular weight on the physicochemical properties of poly(lactic acid) nanoparticles and on the amount of ovalbumin adsorption. J. Braz. Chem. Soc. 22, 2304–2311 (2011).
    • 36. Wilson B, Prud'homme R. Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles. J. Colloid Interface Sci. 604, 208–220 (2021).
    • 37. Singh RR, Saxena V, Zang S et al. Differential contribution of IL-4 and STAT6 vs STAT4 to the development of lupus nephritis. J. Immunol. 170(9), 4818–4825 (2003).
    • 38. Yu HH, Liu PH, Lin YC et al. Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus 19(10), 1219–1228 (2010).
    • 39. Castañeda J, Muñóz-Duarte A, Domínguez-López M, Cruz-López J, Luna-Herrera J. B lymphocyte as a target of bacterial infections. Lymphocyte Updates - Cancer, Autoimmunity Infection 561–573 (2017).
    • 40. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 107, 163–175 (2016). • Discussed the application of polylactic acid nanoparticles (NPs) in the biomedical field.
    • 41. da Silva D, Kaduri M, Poley M et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 340, 9–14 (2018).
    • 42. Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol. 7, 259 (2019).
    • 43. Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv. Drug Deliv. Rev. 107, 176–191 (2016).
    • 44. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. J. Nanobiotechnol. 9, 55 (2011).
    • 45. Garrós N, Mallandrich M, Beirampour N et al. Baricitinib liposomes as a new approach for the treatment of Sjögren's syndrome. Pharmaceutics 14(9), 1–20 (2022).
    • 46. Christmann R, Ho DK, Wilzopolski J et al. Tofacitinib loaded squalenyl nanoparticles for targeted follicular delivery in inflammatory skin diseases. Pharmaceutics 12(12), 1–20 (2020).
    • 47. Gorantla S, Saha RN, Singhvi G. Spectrophotometric method to quantify tofacitinib in lyotropic liquid crystalline nanoparticles and skin layers: application in ex vivo dermal distribution studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 255, 119719 (2021).
    • 48. Anwer MK, Ali EA, Iqbal M et al. Development of sustained release baricitinib loaded lipid-polymer hybrid nanoparticles with improved oral bioavailability. Molecules 1–15 (2022). • Demonstrated that formulated lipid-polymer hybrid NPs could be a promising drug-delivery option to enhance the bioavailability of baricitinib.
    • 49. Bashir S, Naaem Aamir M, Sarfaraz R et al. Fabrication, characterization and in vitro release kinetics of tofacitinib-encapsulated polymeric nanoparticles: a promising implication in the treatment of rheumatoid arthritis. Int. J. Polym. Mater. 70, 1–10 (2020).
    • 50. da Luz CM, Boyles MSP, Falagan-Lotsch P et al. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. J. Nanobiotechnol. 15(1), 11 (2017).
    • 51. Primard C, Rochereau N, Luciani E et al. Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 31(23), 6060–6068 (2010).
    • 52. Peres C, Matos AI, Conniot J et al. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater. 48, 41–57 (2017).
    • 53. Kenny EF, Quinn SR, Doyle SL, Vink PM, van Eenennaam H, O'Neill LA. Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLOS ONE 8(8), e74103 (2013).
    • 54. Rincón-Arévalo H, Burbano C, Atehortúa L et al. Modulation of B cell activation by extracellular vesicles and potential alteration of this pathway in patients with rheumatoid arthritis. Arthritis Res. Ther. 24(1), 169 (2022).
    • 55. Rozovski U, Wu JY, Harris DM et al. Stimulation of the B-cell receptor activates the JAK2/STAT3 signaling pathway in chronic lymphocytic leukemia cells. Blood 123(24), 3797–3802 (2014).
    • 56. Ozaki K, Spolski R, Ettinger R et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol. 173(9), 5361–5371 (2004).
    • 57. Zotos D, Coquet JM, Zhang Y et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207(2), 365–378 (2010).
    • 58. Thomas TP, Goonewardena SN, Majoros IJ et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 63(9), 2671–2680 (2011). • Methotrexate encapsulated in NPs significantly reduced arthritis symptoms.
    • 59. Look M, Stern E, Wang QA et al. Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. J. Clin. Invest. 123(4), 1741–1749 (2013).
    • 60. de la Varga Martínez R, Rodríguez-Bayona B, Añez GA et al. Clinical relevance of circulating anti-ENA and anti-dsDNA secreting cells from SLE patients and their dependence on STAT-3 activation. Eur. J. Immunol. 47(7), 1211–1219 (2017). • Ruxolitinib, a JAK-1 and JAK-2 inhibitor, suppresses the production of total IgG and autoantibodies by B cells in vitro in patients with systemic lupus erythematosus.
    • 61. Dörner T, van Vollenhoven RF, Doria A et al. Baricitinib decreases anti-dsDNA in patients with systemic lupus erythematosus: results from a phase II double-blind, randomized, placebo-controlled trial. Arthritis Res. Ther. 24(1), 112 (2022).
    • 62. Wang SP, Iwata S, Nakayamada S, Sakata K, Yamaoka K, Tanaka Y. Tofacitinib, a JAK inhibitor, inhibits human B cell activation in vitro. Ann. Rheum. Dis. 73(12), 2213–2215 (2014).
    • 63. Yamamoto M, Yokoyama Y, Shimizu Y et al. Tofacitinib can decrease anti-DNA antibody titers in inactive systemic lupus erythematosus complicated by rheumatoid arthritis. Mod. Rheumatol. 26(4), 633–634 (2016).
    • 64. Charbe NB, Amnerkar ND, Ramesh B et al. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm. Sin. B 10(11), 2075–2109 (2020).