We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanomedicine approaches for in vivo cancer immunotherapy

    Stijn RJ Hofstraat

    Laboratory of Chemical Biology, Department of Biomedical Engineering & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands

    ,
    Tom Anbergen

    Department of Internal Medicine & Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands

    &
    Roy van der Meel

    *Author for correspondence:

    E-mail Address: r.v.d.meel@tue.nl

    Laboratory of Chemical Biology, Department of Biomedical Engineering & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands

    Published Online:https://doi.org/10.2217/nnm-2023-0230

    Tweetable abstract

    Commentary just out in @fsgnnm: unleashing the full potential of #cancer #nanomedicines by reprogramming the immunosuppressive #TME using #LNP #mRNA #vaccines and via promoting #trainedimmunity.

    References

    • 1. Petersen GH, Alzghari SK, Chee W, Sankari SS, La-Beck NM. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J. Control. Rel. 232, 255–264 (2016).
    • 2. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJMM, Lammers T. Smart cancer nanomedicine. Nat. Nanotechnol. 14(11), 1007–1017 (2019).
    • 3. Martin JD, Cabral H, Stylianopoulos T et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 17, 251–266 (2020).
    • 4. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18(3), 175–196 (2019).
    • 5. Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40(6), 840–854 (2022).
    • 6. Kulkarni JA, Witzigmann D, Thomson SB et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16(6), 630–643 (2021).
    • 7. Liu C, Shi Q, Huang X et al. mRNA-based cancer therapeutics. Nat. Rev. Cancer 23, 526–543 (2023).
    • 8. Deckers J, Anbergen T, Hokke AM et al. Engineering cytokine therapeutics. Nat. Rev. Bioeng. 2023, 1–18 (2023).
    • 9. Hewitt SL, Bai A, Bailey D et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11(477), eaat9143 (2019).
    • 10. Zhang Y, Hou X, Du S et al. Close the cancer–immunity cycle by integrating lipid nanoparticle–mRNA formulations and dendritic cell therapy. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01453-9 (2023).
    • 11. Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21(4), 1–22 (2022).
    • 12. Dolgin E. Personalized cancer vaccines pass first major clinical test. Nat. Rev. Drug Discov. 22(8), 607–609 (2023).
    • 13. Rojas LA, Sethna Z, Soares KC et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).
    • 14. Carvalho T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. Nat. Med. 2023 https://doi.org/10.1038/d41591-023-00072-0 (2023).
    • 15. Netea MG, Joosten LABB, Latz E et al. Trained immunity: a program of innate immune memory in health and disease. Science 352(6284), 427 (2016).
    • 16. van Leent MMT, Priem B, Schrijver DP et al. Regulating trained immunity with nanomedicine. Nat. Rev. Mater. 7(6), 465–481 (2022).
    • 17. Kalafati L, Kourtzelis I, Schulte-Schrepping J et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183(3), 771–785.e12 (2020).
    • 18. Geller AE, Shrestha R, Woeste MR et al. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 13(1), 1–20 (2022).
    • 19. Ding C, Shrestha R, Zhu X et al. Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis. Nat. Immunol. 24(2), 239–254 (2023).
    • 20. Priem B, van Leent MMT, Teunissen AJP et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183(3), 786–801.e19 (2020).
    • 21. Rosenblum D, Gutkin A, Kedmi R et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 6(47), eabc9450 (2020).
    • 22. Rurik JG, Tombácz I, Yadegari A et al. CAR T cells produced in vivo to treat cardiac injury. Science 375(6576), 91–96 (2022).
    • 23. Segel M, Lash B, Song J et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373(6557), 882–889 (2021).