We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Polyester nanomedicines for visceral leishmaniasis treatment

    Mohini Sikarwar

    Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    Centre for Development of Biomaterials, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    ,
    Vaishali Sunil Mishra

    Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    Centre for Development of Biomaterials, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    ,
    Preeti Tiwari

    Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India

    ,
    Madhu Gupta

    School of Pharmaceutical Sciences, Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, Pushp Vihar, Sector 3, MB Road, New Delhi, 110017, India

    ,
    Sunny Dholpuria

    Department of Life Sciences, JC Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India

    &
    Piyush Kumar Gupta

    *Author for correspondence:

    E-mail Address: piyush.kumar1@sharda.ac.in

    Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    Centre for Development of Biomaterials, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India

    Published Online:https://doi.org/10.2217/nnm-2023-0215

    Tweetable abstract

    Unveiling the power of polyester nanomedicines in revolutionizing visceral leishmaniasis treatment with enhanced drug loading and precise targeting.

    References

    • 1. Eaton P, Bittencourt CR, Costa Silva V et al. Anti-leishmanial activity of the antimicrobial peptide DRS 01 observed in Leishmania infantum (syn. Leishmania chagasi) cells. Nanomedicine 10(2), 483–490 (2014).
    • 2. Alemayehu B, Alemayehu M. Leishmaniasis: a review on parasite, vector and reservoir host. Heal. Sci. J. 11(4), 519 (2017).
    • 3. Jain K, Verma AK, Mishra PR, Jain NK. Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine 11(3), 705–713 (2015).
    • 4. Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm. Sin. B doi: 10.1016/j.apsb.2023.05.018 (2023) (Online).
    • 5. Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M. New approaches from nanomedicine for treating leishmaniasis. Chem. Soc. Rev. 45(1), 152–168 (2015).
    • 6. Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Ann. Rev. Chem. Biomol. Eng. 9, 105 (2018).
    • 7. Tang H, Zhao W, Yu J, Li Y, Zhao C. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules 24(1), 4 (2018).
    • 8. Kumar R, Gupta PK, Pandit S et al. Synthesis and characterization of biocompatible bimetallic-semi-aromatic polyester hybrid nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 633(1), 127845 (2022).
    • 9. Chauhan S, Al-Dayan N, Kumar R et al. Synthesis and characterization of novel bimetallic-semi-aromatic polyester nanocomposite for possible biomedical use. Mater. Lett. 306(1), 130943 (2022).
    • 10. Bigaj-Józefowska MJ, Grześkowiak BF. Polymeric nanoparticles wrapped in biological membranes for targeted anticancer treatment. Eur. Polym. J. 176(8), 111427 (2022).
    • 11. Katebi A, Varshochian R, Riazi-Rad F, Ganjalikhani-Hakemi M, Ajdary S. Combinatorial delivery of antigen and TLR agonists via PLGA nanoparticles modulates Leishmania major-infected-macrophages activation. Biomed. Pharmacother. 137(5), 111276 (2021).
    • 12. Puig-Rigall J, Fernández-Rubio C, González-Benito J et al. Structural characterization by scattering and spectroscopic methods and biological evaluation of polymeric micelles of poloxamines and TPGS as nanocarriers for miltefosine delivery. Int. J. Pharm. 578(3), 119057 (2020).
    • 13. Saqib M, Shabbir Ali Bhatti A, Ahmad NM et al. Amphotericin B loaded polymeric nanoparticles for treatment of Leishmania infections. Nanomaterials (Basel) 10(6), 1152 (2020).
    • 14. Tambe S, Kumar R, Amin P et al. Current aspects of organoid technology for biomaterial toxicity analysis. Future Med. Chem. 15(7), 579–582 (2023).
    • 15. Meireles PW, de Souza DPB, Rezende MG et al. Nanoparticles loaded with a new thiourea derivative: development and in vitro evaluation against Leishmania amazonensis. Curr. Drug Deliv. 17(8), 694–702 (2020).
    • 16. Valle IV, Machado ME, Araújo CDCB et al. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology 30, 455102 (2019).
    • 17. Afzal I, Sarwar HS, Sohail MF et al. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine (Lond.) 14(4), 387–406 (2019).
    • 18. Abamor ES. Antileishmanial activities of caffeic acid phenethyl ester loaded PLGA nanoparticles against Leishmania infantum promastigotes and amastigotes in vitro. Asian Pac. J. Trop. Med. 10(1), 25–34 (2017).