We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Recent advances in copper sulfide nanoparticles for phototherapy of bacterial infections and cancer

    Wei-Jen Chan

    *Author for correspondence:

    E-mail Address: wec91@pitt.edu

    Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA

    ,
    Sandeep Urandur

    Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA

    ,
    Huatian Li

    Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA

    &
    Venkanagouda S Goudar

    Engineering & System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan

    Published Online:https://doi.org/10.2217/nnm-2023-0202

    Copper sulfide nanoparticles (CuS NPs) have attracted growing interest in biomedical research due to their remarkable properties, such as their high photothermal and thermodynamic capabilities, which are ideal for anticancer and antibacterial applications. This comprehensive review focuses on the current state of antitumor and antibacterial applications of CuS NPs. The initial section provides an overview of the various approaches to synthesizing CuS NPs, highlighting the size, shape and composition of CuS NPs fabricated using different methods. In this review, the mechanisms underlying the antitumor and antibacterial activities of CuS NPs in medical applications are discussed and the clinical challenges associated with the use of CuS NPs are also addressed.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
    • 2. Behranvand N, Nasri F, Zolfaghari Emameh R et al. Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol. Immunother. 71(3), 507–526 (2022).
    • 3. Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct. Target. Ther. 7(1), 258 (2022).
    • 4. Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomed. 16(2021), 8139–8140 (2021).
    • 5. Esfahani K, Roudaia L, Buhlaiga N, Del Rincon S, Papneja N, Miller W. A review of cancer immunotherapy: from the past, to the present, to the future. Curr. Oncol. 27(Suppl. 2), 87–97 (2020).
    • 6. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity 52(1), 17–35 (2020).
    • 7. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 21(9), 3233 (2020).
    • 8. Emran TB, Shahriar A, Mahmud AR et al. Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 12, 891652 (2022).
    • 9. Loria R, Vici P, Di Lisa FS, Soddu S, Maugeri-Saccà M, Bon G. Cross-resistance among sequential cancer therapeutics: an emerging issue. Front. Oncol. 12, 877380 (2022).
    • 10. Diazzi S, Tartare-Deckert S, Deckert M. The mechanical phenotypic plasticity of melanoma cell: an emerging driver of therapy cross-resistance. Oncogenesis 12(1), 7 (2023).
    • 11. Şen Karaman D, Ercan UK, Bakay E, Topaloğlu N, Rosenholm JM. Evolving technologies and strategies for combating antibacterial resistance in the advent of the postantibiotic era. Adv. Funct. Mater. 30(15), 1908783 (2020).
    • 12. Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 18(5), 275–285 (2020). •• Describes the urgent needs for the development of new-generation antibiotic strategies.
    • 13. Nirmal K, Saini V, Singh NP. Antibacterial resistance menace: a global cause of concern? Int. J. Med. Sci. Clin. Res. 2(9), 71–77 (2022).
    • 14. Butler MS, Gigante V, Sati H et al. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, more action is needed. Antimicrob. Agents Chemother. 66(3), e01991–01921 (2022).
    • 15. Maliki M, Ifijen IH, Ikhuoria EU et al. Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. Int. Nano Lett. 12(4), 379–398 (2022).
    • 16. Poudel K, Gautam M, Jin SG, Choi H-G, Yong CS, Kim JO. Copper sulfide: an emerging adaptable nanoplatform in cancer theranostics. Int. J. Pharm. 562, 135–150 (2019).
    • 17. Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10(4), 631–645 (2014).
    • 18. Shamraiz U, Hussain RA, Badshah A. Fabrication and applications of copper sulfide (CuS) nanostructures. J. Solid State Chem. 238, 25–40 (2016).
    • 19. Kumar AVP, Dubey SK, Tiwari S et al. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int. J. Pharm. 606, 120848 (2021).
    • 20. Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules 23(7), 1704 (2018).
    • 21. Norouzi H, Khoshgard K, Akbarzadeh F. In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med. Sci. 33, 917–926 (2018).
    • 22. Chen J, Ning C, Zhou Z et al. Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 99, 1–26 (2019).
    • 23. Inasawa S, Sugiyama M, Yamaguchi Y. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. J. Phys. Chem. B 109(8), 3104–3111 (2005).
    • 24. Yao C, Liang XX, Wang S, Xin J, Zhang L, Zhang Z. Optical theranostics based on gold nanoparticles. J. Biomed. Photonics Eng. 245–284 (2023).
    • 25. Guo L, Yan DD, Yang D et al. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 8(6), 5670–5681 (2014).
    • 26. Guo L, Panderi I, Yan DD et al. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano 7(10), 8780–8793 (2013).
    • 27. Naskar A, Kim K-S. Photo-stimuli-responsive CuS nanomaterials as cutting-edge platform materials for antibacterial applications. Pharmaceutics 14(11), 2343 (2022). • Describes the importance of using phototherapies for antibacterial applications.
    • 28. Wu C, Zhu A, Li D et al. Photosensitizer-assembled PEGylated graphene–copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent. Expert Opin. Drug Deliv. 13(1), 155–165 (2016).
    • 29. Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13(5), e1715 (2021).
    • 30. Xie Z, Fan T, An J et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev. 49(22), 8065–8087 (2020).
    • 31. Wang Y, Jin Y, Chen W et al. Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74–90 (2019).
    • 32. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11(6), 371–384 (2013). • Describes the main mechanisms of antibacterial effects of metals.
    • 33. Lai J, Niu W, Luque R, Xu G. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10(2), 240–267 (2015).
    • 34. Hosokawa S. Synthesis of metal oxides with improved performance using a solvothermal method. J. Ceram. Soc. Jpn 124(9), 870–874 (2016).
    • 35. Zhou S-L, Gong L-G, Zhao X-Y et al. Synthesis and photocatalytic performance of copper sulfide by a simple solvothermal method. Chem. Phys. Lett. 759, 138034 (2020).
    • 36. Jiang J, Jiang Q, Deng R, Xie X, Meng J. Controllable preparation, formation mechanism and photocatalytic performance of copper base sulfide nanoparticles. Mater. Chem. Phys. 254, 123504 (2020).
    • 37. Tamadoni Saray M, Yurkiv V, Shahbazian-Yassar R. In situ thermolysis of a Ni salt on amorphous carbon and graphene oxide substrates. Adv. Funct. Mater. 33(28), 2213747 (2023).
    • 38. Hanif MA, Lee I, Akter J et al. Enhanced photocatalytic and antibacterial performance of ZnO nanoparticles prepared by an efficient thermolysis method. Catalysts 9(7), 608 (2019).
    • 39. Zhou P, Li N, Chao Y et al. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58(40), 14184–14188 (2019).
    • 40. Marin R, Lifante J, Besteiro LV et al. Plasmonic copper sulfide nanoparticles enable dark contrast in optical coherence tomography. Adv. Healthc. Mater. 9(5), 1901627 (2020).
    • 41. ul Ain N, Aamir A, Khan Y, Rehman M-u, Lin D-J. Catalytic and photocatalytic efficacy of hexagonal CuS nanoplates derived from copper (II) dithiocarbamate. Mater. Chem. Phys. 242, 122408 (2020).
    • 42. Kwon SG, Hyeon T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7(19), 2685–2702 (2011).
    • 43. de Mello Donegá C, Liljeroth P, Vanmaekelbergh D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1(12), 1152–1162 (2005).
    • 44. Senthilkumar M, Mary CI, Manobalaji G, Babu SM. Ligand assisted tunability of morphological and optical properties of copper sulfide nanocrystals. Mater. Sci. Semicond. Process. 104, 104685 (2019).
    • 45. Siddharthan A, Seshadri S, Kumar TS. Rapid synthesis of calcium deficient hydroxyapatite nanoparticles by microwave irradiation. Trends Biomater. Artif. Organs 18(2), 110–114 (2005).
    • 46. Hasany S, Ahmed I, Rajan J, Rehman A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol. 2(6), 148–158 (2012).
    • 47. Chin CD-W, Treadwell LJ, Wiley JB. Microwave synthetic routes for shape-controlled catalyst nanoparticles and nanocomposites. Molecules 26(12), 3647 (2021).
    • 48. Wang Z, Zhu Y, Peng H, Du C, Ma X, Cao C. Microwave-induced phase engineering of copper sulfide nanosheets for rechargeable magnesium batteries. Electrochim. Acta 374, 137965 (2021).
    • 49. Zabihollahpoor A, Rahimnejad M, Najafpour G, Moghadamnia AA. Gold nanoparticle prepared by electrochemical deposition for electrochemical determination of gabapentin as an antiepileptic drug. J. Electroanal. Chem. 835, 281–286 (2019).
    • 50. Meng Q, Wang Z, Chai X, Weng Z, Ding R, Dong L. Fabrication of hematite (α-Fe2O3) nanoparticles using electrochemical deposition. Appl. Surf. Sci. 368, 303–308 (2016).
    • 51. Kar P, Farsinezhad S, Zhang X, Shankar K. Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction. Nanoscale 6(23), 14305–14318 (2014).
    • 52. Wang F, Dong H, Pan J, Li J, Li Q, Xu D. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells. J. Phys. Chem. C 118(34), 19589–19598 (2014).
    • 53. Ghahremaninezhad A, Asselin E, Dixon D. One-step template-free electrosynthesis of 300 μm long copper sulfide nanowires. Electrochem. Commun. 13(1), 12–15 (2011).
    • 54. Butcher K, Hirshy H, Perks RM, Wintrebert-Fouquet M, Chen PPT. Stoichiometry effects and the Moss–Burstein effect for InN. Phys. Status Solidi 203(1), 66–74 (2006).
    • 55. Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C. Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides. J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
    • 56. Chen YB, Chen L, Wu LM. The structure-controlling solventless synthesis and optical properties of uniform Cu2S nanodisks. Chem. Eur. J. 14(35), 11069–11075 (2008).
    • 57. Li C, Chen G, Zhang Y, Wu F, Wang Q. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 142(35), 14789–14804 (2020).
    • 58. Liu T-M, Conde J, Lipiński T, Bednarkiewicz A, Huang C-C. Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater. 8(8), e295–e295 (2016).
    • 59. Tao W, Farokhzad OC. Theranostic nanomedicine in the NIR-II window: classification, fabrication, and biomedical applications. Chem. Rev. 122(6), 5405–5407 (2022).
    • 60. Luther JM, Jain PK, Ewers T, Alivisatos AP. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10(5), 361–366 (2011).
    • 61. Liu X, Wang X, Zhou B, Law WC, Cartwright AN, Swihart MT. Size-controlled synthesis of Cu2-xE (E=S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv. Funct. Mater. 23(10), 1256–1264 (2013).
    • 62. Mutalik C, Okoro G, Krisnawati DI et al. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. J. Colloid Interface Sci. 607, 1825–1835 (2022).
    • 63. Shalabayev Z, Baláz M, Daneu N et al. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity. ACS Sustain. Chem. Eng. 7(15), 12897–12909 (2019).
    • 64. Bekhit M, Abo El Naga AO, El Saied M, Abdel Maksoud MI. Radiation-induced synthesis of copper sulfide nanotubes with improved catalytic and antibacterial activities. Environ. Sci. Pollut. Res. 28, 44467–44478 (2021).
    • 65. Wang W, Li B, Yang H et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 13, 2156–2164 (2020).
    • 66. Liu L, Lai Y, Cao J, Peng Y, Tian T, Fu W. Exploring the antibacterial and biosensing applications of peroxidase-mimetic Ni0.1Cu0.9S nanoflower. Biosensors 12(10), 874 (2022).
    • 67. Bai Q, Liang M, Wu W et al. Plasmonic nanozyme of graphdiyne nanowalls wrapped hollow copper sulfide nanocubes for rapid bacteria-killing. Adv. Funct. Mater. 32(20), 2112683 (2022).
    • 68. Qiao Y, Ping Y, Zhang H et al. Laser-activatable CuS nanodots to treat multidrug-resistant bacteria and release copper ion to accelerate healing of infected chronic nonhealing wounds. ACS Appl. Mater. Interfaces 11(4), 3809–3822 (2019).
    • 69. Kwon Y-T, Lim G-D, Kim S, Ryu SH, Lim H-R, Choa Y-H. Effect of localized surface plasmon resonance on dispersion stability of copper sulfide nanoparticles. Appl. Surf. Sci. 477, 204–210 (2019).
    • 70. Lesyuk R, Klein E, Yaremchuk I, Klinke C. Copper sulfide nanosheets with shape-tunable plasmonic properties in the NIR region. Nanoscale 10(44), 20640–20651 (2018).
    • 71. Woods-Robinson R, Han Y, Zhang H et al. Wide band gap chalcogenide semiconductors. Chem. Rev. 120(9), 4007–4055 (2020).
    • 72. Huang F, Wang X, Xu J, Chen D, Wang Y. A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S–ZnS dimeric nanoheterostructure synthesized in solution. J. Mater. Chem. 22(42), 22614–22618 (2012).
    • 73. Hussein ON, AL-Jawad SM, Imran NJ. Structural, morphological, optical, and antibacterial properties of Mn and (Ag, Mn) co-doped copper sulfide nanostructures. Opt. Quantum Electron. 55(6), 503 (2023).
    • 74. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65(13–14), 1803–1815 (2013).
    • 75. Abo-zeid Y, Amer A, El-Houssieny B, Mahmoud M, Sakran W. Overview on bacterial resistance and nanoparticles to overcome bacterial resistance. J. Adv. Pharm. Res. 5(3), 312–326 (2021).
    • 76. Gómez-Núñez MF, Castillo-López M, Sevilla-Castillo F et al. Nanoparticle-based devices in the control of antibiotic resistant bacteria. Front. Microbiol. 11, 563821 (2020).
    • 77. Hans M, Mathews S, Mücklich F, Solioz M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 11(1), doi: 10.1116/1.4935853 (2016).
    • 78. Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13), 135101 (2014).
    • 79. Sun Y, Tian P, Ding D et al. Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction. Appl. Catal. B Environ. 258, 117985 (2019).
    • 80. Wardman P, Candeias LP. Fenton chemistry: an introduction. Radiat. Res. 145(5), 523–531 (1996).
    • 81. Sutton HC, Winterbourn CC. On the participation of higher oxidation states of iron and copper in Fenton reactions. Free Radic. Biol. Med. 6(1), 53–60 (1989).
    • 82. Srinivas US, Tan BW, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 25, 101084 (2019).
    • 83. Hemnani T, Parihar M. Reactive oxygen species and oxidative DNA damage. Indian J. Physiol. Pharmacol. 42, 440–452 (1998).
    • 84. Midander K, Cronholm P, Karlsson HL et al. Surface characteristics, copper release, and toxicity of nano-and micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5(3), 389–399 (2009).
    • 85. Strauch BM, Hubele W, Hartwig A. Impact of endocytosis and lysosomal acidification on the toxicity of copper oxide nano-and microsized particles: uptake and gene expression related to oxidative stress and the DNA damage response. Nanomaterials 10(4), 679 (2020).
    • 86. Li Z, Xie C-J, Ren X-W, Zhang Q, Ma B-J. CuS nanoenzyme against bacterial infection by in situ hydroxyl radical generation on bacteria surface. Rare Metals 42(6), 1899–1911 (2023).
    • 87. Spielman-Sun E, Lombi E, Donner E et al. Temporal evolution of copper distribution and speciation in roots of Triticum aestivum exposed to CuO, Cu(OH)2, and CuS nanoparticles. Environ. Sci. Technol. 52(17), 9777–9784 (2018).
    • 88. Wang L, Ma X, Cai K, Li X. Morphological effect of copper sulfide nanoparticles on their near infrared laser activated photothermal and photodynamic performance. Mater. Res. Express 6(10), 105406 (2019).
    • 89. Barwinska-Sendra A, Waldron KJ. The role of intermetal competition and mis-metalation in metal toxicity. Adv. Microb. Physiol. 70, 315–379 (2017).
    • 90. Cobine PA, Moore SA, Leary SC. Getting out what you put in: copper in mitochondria and its impacts on human disease. Biochim. Biophys. Acta Mol. Cell Res. 1868(1), 118867 (2021).
    • 91. Yougbaré S, Mutalik C, Krisnawati DI et al. Nanomaterials for the photothermal killing of bacteria. Nanomaterials 10(6), 1123 (2020).
    • 92. Huo J, Jia Q, Huang H et al. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem. Soc. Rev. 50(15), 8762–8789 (2021).
    • 93. Kuo C-L, Ponneri Babuharisankar A, Lin Y-C et al. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? J. Biomed. Sci. 29(1), 74 (2022).
    • 94. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, Leonart ME. Oxidative stress and cancer: an overview. Ageing Res. Rev. 12(1), 376–390 (2013).
    • 95. Jan R. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 9(2), 205 (2019).
    • 96. Sadeghi S, Davoodvandi A, Pourhanifeh MH et al. Anti-cancer effects of cinnamon: insights into its apoptosis effects. Eur. J. Med. Chem. 178, 131–140 (2019).
    • 97. Gao L, Loveless J, Shay C, Teng Y. Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Adv. Exp. Med. Biol. 1260, 1–12 (2020).
    • 98. Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. The emerging role of paraptosis in tumor cell biology: perspectives for cancer prevention and therapy with natural compounds. Biochim. Biophys. Acta Rev. Cancer 1873(2), 188338 (2020).
    • 99. Ji P, Wang P, Chen H et al. Potential of copper and copper compounds for anticancer applications. Pharmaceuticals 16(2), 234 (2023).
    • 100. Hanson S, Dharan A, P V J et al. Paraptosis: a unique cell death mode for targeting cancer. Front. Pharmacol. 14, 1159409 (2023).
    • 101. Kma L, Baruah TJ. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol. Appl. Biochem. 69(1), 248–264 (2022).
    • 102. Roca-Agujetas V, de Dios C, Lestón L, Marí M, Morales A, Colell A. Recent insights into the mitochondrial role in autophagy and its regulation by oxidative stress. Oxidative Med. Cell. Longev. 2019, doi: 10.1155/2019/3809308 (2019).
    • 103. Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 32(5), 417–418 (2022).
    • 104. Wang Y, Zhang L, Zhou F. Cuproptosis: a new form of programmed cell death. Cell. Mol. Immunol. 19(8), 867–868 (2022).
    • 105. Zou Z, Sun J, Li Q et al. Vancomycin modified copper sulfide nanoparticles for photokilling of vancomycin-resistant enterococci bacteria. Colloids Surf. B 189, 110875 (2020).
    • 106. Hyun JY, Lee C-H, Lee H, Jang W-D, Shin I. Bacterial lectin-targeting glycoconjugates for selective elimination of pathogenic bacteria. ACS Macro Lett. 9(10), 1429–1432 (2020).
    • 107. Hou S, Mahadevegowda SH, Mai VC, Chan-Park MB, Duan H. Glycosylated copper sulfide nanocrystals for targeted photokilling of bacteria in the near-infrared II window. Adv. Ther. 2(8), 1900052 (2019).
    • 108. Xie Y, Qian Y, Li Z et al. Near-infrared-activated efficient bacteria-killing by lignin-based copper sulfide nanocomposites with an enhanced photothermal effect and peroxidase-like activity. ACS Sustain. Chem. Eng. 9(18), 6479–6488 (2021).
    • 109. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017).
    • 110. Wang Z, Lin Z, Shen S, Zhong W, Cao S. Advances in designing heterojunction photocatalytic materials. Chinese J. Catal. 42(5), 710–730 (2021).
    • 111. Liu X, Li X, Shan Y et al. CuS nanoparticles anchored to g-C3N4 nanosheets for photothermal ablation of bacteria. RSC Adv. 10(21), 12183–12191 (2020).
    • 112. Li Y, Su M, Yan T, Wang Z, Zhang J. Near-infrared copper sulfide hollow nanostructures with enhanced photothermal and photocatalytic performance for effective bacterial sterilization. ACS Appl. Bio Mater. 2468–2476 (2023).
    • 113. Lin X, Fang Y, Hao Z et al. Bacteria-triggered multifunctional hydrogel for localized chemodynamic and low-temperature photothermal sterilization. Small 17(51), 2103303 (2021).
    • 114. Yamamoto K, Imaoka T, Tanabe M, Kambe T. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev. 120(2), 1397–1437 (2019).
    • 115. Ouyang Z, Li D, Xiong Z et al. Antifouling dendrimer-entrapped copper sulfide nanoparticles enable photoacoustic imaging-guided targeted combination therapy of tumors and tumor metastasis. ACS Appl. Mater. Interfaces 13(5), 6069–6080 (2021).
    • 116. Zhang Y, Ouyang Z, Zhan M et al. An intelligent vascular disrupting dendritic nanodevice incorporating copper sulfide nanoparticles for immune modulation-mediated combination tumor therapy. Small. 19(39), 2301914 (2023).
    • 117. Pan X, Li P, Bai L et al. Biodegradable nanocomposite with dual cell–tissue penetration for deep tumor chemo-phototherapy. Small 16(22), 2000809 (2020).
    • 118. Yang J, Dai D, Lou X, Ma L, Wang B, Yang Y-W. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics 10(2), 615 (2020).
    • 119. Hu H, Zhang W, Lei L et al. Combination losartan with hyaluronic acid modified diethyldithiocarbamate loaded hollow copper sulfide nanoparticles for the treatment of breast cancer and metastasis. Chin. Chem. Lett. 108765 (2023).
    • 120. Ning S, Mo J, Huang R et al. Injectable thermo-sensitive hydrogel loaded hollow copper sulfide nanoparticles for ROS burst in TME and effective tumor treatment. Front. Bioeng. Biotechnol. 11, 1191014 (2023).
    • 121. Wang S, Pang Y, Hu S, Lv J, Lin Y, Li M. Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer. J. Chem. Eng. 451, 138864 (2023).
    • 122. Yan T, Yang K, Chen C et al. Synergistic photothermal cancer immunotherapy by Cas9 ribonucleoprotein-based copper sulfide nanotherapeutic platform targeting PTPN2. Biomaterials 279, 121233 (2021).
    • 123. Poudel K, Thapa RK, Gautam M et al. Multifaceted NIR-responsive polymer-peptide-enveloped drug-loaded copper sulfide nanoplatform for chemo-phototherapy against highly tumorigenic prostate cancer. Nanomedicine 21, 102042 (2019).
    • 124. Wu Z, Zhang P, Wang P, Wang Z, Luo X. Using copper sulfide nanoparticles as cross-linkers of tumor microenvironment responsive polymer micelles for cancer synergistic photo-chemotherapy. Nanoscale 13(6), 3723–3736 (2021).
    • 125. Gholami M, Hekmat A, Khazaei M, Darroudi M. OXA-CuS@ UiO-66-NH2 as a drug delivery system for oxaliplatin to colorectal cancer cells. J. Mater. Sci. Mater. Med. 33(3), 26 (2022).
    • 126. Tang H-X, Liu C-G, Zhang J-T et al. Biodegradable quantum composites for synergistic photothermal therapy and copper-enhanced chemotherapy. ACS Appl. Mater. Interfaces 12(42), 47289–47298 (2020).
    • 127. Lim JH, Choi HW, Mo SJ, Chung BG. Dual-stimuli responsive mesoporous copper (II) sulfide nanocomposite for chemo-photothermal synergistic therapy. Microporous Mesoporous Mater. 302, 110228 (2020).
    • 128. Li X, Pan Y, Zhou J et al. Hyaluronic acid-modified manganese dioxide-enveloped hollow copper sulfide nanoparticles as a multifunctional system for the co-delivery of chemotherapeutic drugs and photosensitizers for efficient synergistic antitumor treatments. J. Colloid Interface Sci. 605, 296–310 (2022).
    • 129. Zhang Z, Zhou J, Liu C et al. Emerging biomimetic nanotechnology in orthopedic diseases: progress, challenges, and opportunities. Trends Chem. (2022).
    • 130. Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers 11(12), 1836 (2019).
    • 131. Zhan Z, Zeng W, Liu J et al. Engineered biomimetic copper sulfide nanozyme mediates ‘don't eat me’ signaling for photothermal and chemodynamic precision therapies of breast cancer. ACS Appl. Mater. Interfaces (2023).
    • 132. Huang Y, Gao X, Chen J. Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharm. Sin. B 8(1), 4–13 (2018).
    • 133. Li J, Cheng Q, Yue L et al. Macrophage-hitchhiking supramolecular aggregates of CuS nanoparticles for enhanced tumor deposition and photothermal therapy. Nanoscale Horiz. 6(11), 907–912 (2021).
    • 134. Cai H, Dai X, Guo X et al. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma. Acta Biomater. 127, 276–286 (2021).
    • 135. Wang Z, von dem Bussche A, Kabadi PK, Kane AB, Hurt RH. Biological and environmental transformations of copper-based nanomaterials. ACS Nano 7(10), 8715–8727 (2013).
    • 136. Li L, Hu L, Zhou Q et al. Sulfidation as a natural antidote to metallic nanoparticles is overestimated: CuO sulfidation yields CuS nanoparticles with increased toxicity in medaka (Oryzias latipes) embryos. Environ. Sci. Technol. 49(4), 2486–2495 (2015).
    • 137. Jiang T, Guo H, Xia Y-N et al. Hepatotoxicity of copper sulfide nanoparticles towards hepatocyte spheroids using a novel multi-concave agarose chip method. Nanomedicine 16(17), 1487–1504 (2021).
    • 138. Venditto VJ, Szoka FC Jr. Cancer nanomedicines: so many papers and so few drugs! Adv. Drug Deliv. Rev. 65(1), 80–88 (2013).
    • 139. Mofokeng T, Moloto M, Shumbula P, Tetyana P. Synthesis, characterization and cytotoxicity of alanine-capped CuS nanoparticles using human cervical carcinoma HeLa cells. Anal. Biochem. 580, 36–41 (2019).
    • 140. Kong L, Wang X, Li X et al. Aggravated toxicity of copper sulfide nanoparticles via hypochlorite-induced nanoparticle dissolution. Environ. Sci. Nano 9(4), 1439–1452 (2022).
    • 141. Zhou M, Tian M, Li C. Copper-based nanomaterials for cancer imaging and therapy. Bioconjugate Chem. 27(5), 1188–1199 (2016). • Describes the potential applications of copper-based nanomaterials for anticancer treatments.
    • 142. Wan X, Liu M, Ma M et al. The ultrasmall biocompatible CuS@BSA nanoparticle and its photothermal effects. Front. Pharmacol. 10, 141 (2019).