We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery systems for transbuccal drug delivery

    Digvijay Dattatray Desai

    Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India

    ,
    Jyothsna Manikkath

    *Author for correspondence: Tel.: +91 820 292 2482;

    E-mail Address: jyothsna.manikkath@manipal.edu

    Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India

    ,
    Hitesh Lad

    Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India

    ,
    Mugdha Kulkarni

    Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India

    ,
    Aparna Manikkath

    Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA

    &
    Raghu Radhakrishnan

    Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India

    Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S102TA, United Kingdom

    Published Online:https://doi.org/10.2217/nnm-2023-0180

    Buccal drug-delivery systems present a promising approach for the drug delivery to the buccal mucosa, addressing oral cavity-specific problems, enabling systemic delivery and minimizing adverse effects on biological systems. Numerous strategies have been proposed to load drug-containing nanoparticles (NPs) to the buccal mucosa for local and systemic applications. There has been considerable interest in the development of mucoadhesive buccal formulations, particularly hydrogel composites utilizing mucoadhesive films incorporating NPs. Drug permeability and controlled drug release through buccal drug delivery continues to pose a challenge despite the availability of various remedies. This review highlights the need for, mechanisms and latest advances in NP-based transbuccal drug delivery with a focus on various pathological disorders and examples and limitations of the different methods.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in oral drug delivery. Front. Pharmacol. 12, doi: 10.3389/fphar.2021.618411 (2021) (Online).
    • 2. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021).
    • 3. Abramson A, Kirtane AR, Shi Y et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter 5(3), 975–987 (2022).
    • 4. Mazzinelli E, Favuzzi I, Arcovito A et al. Oral mucosa models to evaluate drug permeability. Pharmaceutics 15(5), 1559 (2023).
    • 5. Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clin. Pharmacokinet. 41(9), 661–680 (2002).
    • 6. Lam JKW, Xu Y, Worsley A, Wong ICK. Oral transmucosal drug delivery for pediatric use. Adv. Drug. Deliv. Rev. 73, 50–62 (2014).
    • 7. Madhav NVS, Shakya AK, Shakya P, Singh K. Orotransmucosal drug delivery systems: a review. J. Control. Rel. 140(1), 2–11 (2009).
    • 8. Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J. Control. Rel. 153(2), 106–116 (2011).
    • 9. Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front. Pharmacol. 10, doi: 10.3389/fphar.2019.01328 (2019) (Online).
    • 10. Shipp L, Liu F, Kerai-Varsani L, Okwuosa TC. Buccal films: a review of therapeutic opportunities, formulations and relevant evaluation approaches. J. Control. Rel. 352, 1071–1092 (2022). • Highlights mucoadhesive buccal films.
    • 11. Al-Dhubiab BE, Nair AB, Kumria R, Attimarad M, Harsha S. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids Surf. B Biointerfaces 136, 878–884 (2015).
    • 12. Abd El Azim H, Nafee N, Ramadan A, Khalafallah N. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins. Int. J. Pharm. 488(1–2), 78–85 (2015).
    • 13. Kamimori GH, Karyekar CS, Otterstetter R et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 234(1–2), 159–167 (2002).
    • 14. Russell MA, Merriman R, Stapleton J, Taylor W. Effect of nicotine chewing gum as an adjunct to general practitioner's advice against smoking. Br. Med. J. (Clin. Res. Ed.) 287(6407), 1782–1785 (1983).
    • 15. Vaidya A, Mitragotri S. Ionic liquid-mediated delivery of insulin to buccal mucosa. J. Control. Rel. 327, 26–34 (2020).
    • 16. Chinna Reddy P, Chaitanya KSC, Madhusudan Rao Y. A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. Daru 19(6), 385 (2011).
    • 17. Bayer IS. Recent advances in mucoadhesive interface materials, mucoadhesion characterization, and technologies. Adv. Mater. Interfaces 9(18), (2022) (Online). •• Gives valuable insight on mucoadhesion.
    • 18. Tran PHL, Duan W, Tran TTD. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int. J. Pharm. 571, doi: 10.1016/j.ijpharm.2019.118697 (2019) (Online).
    • 19. Manikkath J, Parekh HS, Mutalik S. Surface-engineered nanoliposomes with lipidated and non-lipidated peptide-dendrimeric scaffold for efficient transdermal delivery of a therapeutic agent: development, characterization, toxicological and preclinical performance analyses. Eur. J. Pharm. Biopharm. 156, 97–113 (2020).
    • 20. Nair AB, Kumria R, Harsha S, Attimarad M, Al-Dhubiab BE, Alhaider IA. In vitro techniques to evaluate buccal films. J. Control. Rel. 166(1), 10–21 (2013).
    • 21. Brizuela M, Winters R. Histology, oral mucosa. Updated 8 May 2023. In: StatPearls. StatPearls Publishing, FL, USA (2023). www.ncbi.nlm.nih.gov/books/NBK572115/
    • 22. Yakubov GE, Gibbins H, Proctor GB, Carpenter GH. Oral mucosa: physiological and physicochemical aspects. In: Mucoadhesive Materials and Drug Delivery Systems. Khutoryanskiy VV (Ed.). John Wiley and Sons, Chichester, UK, 1–38 (2014).
    • 23. Schwartz M, Neiers F, Charles JP et al. Oral enzymatic detoxification system: insights obtained from proteome analysis to understand its potential impact on aroma metabolization. Compr. Rev. Food Sci. Food Saf. 20(6), 5516–5547 (2021).
    • 24. Sneha R, Vedha Hari BN, Ramya Devi D. Design of antiretroviral drug-polymeric nanoparticles laden buccal films for chronic HIV therapy in paediatrics. Colloid Interface Sci. Commun. 27, 49–59 (2018).
    • 25. Zhao K, Xie Y, Lin X, Xu W. The mucoadhesive nanoparticle-based delivery system in the development of mucosal vaccines. Int. J. Nanomed. 17, 4579–4598 (2022).
    • 26. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 57(11), 1556–1568 (2005).
    • 27. Shaikh R, Raj Singh TR, Garland M, Woolfson A, Donnelly R. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci. 3(1), 89–100 (2011).
    • 28. Brooks AE. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery. Front. Chem. 3, 65 (2015).
    • 29. Ponchel G, Irache JM. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv. Drug Deliv. Rev. 34(2–3), 191–219 (1998).
    • 30. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61(2), 158–171 (2009).
    • 31. Roy S, Pal K, Anis A, Pramanik K, Prabhakar B. Polymers in mucoadhesive drug-delivery systems: a brief note. Des. Monomers Polym. 12(6), 483–495 (2012).
    • 32. Cone RA. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61(2), 75–85 (2009).
    • 33. Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys. J. 81(4), 1930–1937 (2001).
    • 34. Saltzman WM, Radomsky ML, Whaley KJ, Cone RA. Antibody diffusion in human cervical mucus. Biophys. J. 66, 508–515 (1994).
    • 35. Tan YL, Liu CG. Preparation and characterization of self-assembled nanoparticles based on folic acid modified carboxymethyl chitosan. J. Mater. Sci. Mater. Med. 22(5), 1213–1220 (2011).
    • 36. Manikkath J, Sumathy T, Manikkath A, Mutalik S. Delving deeper into dermal and transdermal drug delivery: factors and mechanisms associated with nanocarrier-mediated strategies. Curr. Pharm. Des. 24(27), 3210–3222 (2018). • Gives insight into the biological interaction of nanoparticulate carriers based on their physicochemical properties.
    • 37. Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018).
    • 38. Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: a review. Food Hydrocoll. 118, doi: 10.1016/j.foodhyd.2021.106772 (2021) (Online).
    • 39. Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain NK. Mucoadhesion: a promising approach in drug delivery system. React. Funct. Polym. 100, 151–172 (2016).
    • 40. Crater JS, Carrier RL. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol. Biosci. 10(12), 1473–1483 (2010).
    • 41. Roblegg E, Fröhlich E, Meindl C, Teubl B, Zaversky M, Zimmer A. Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology 6(4), 399–413 (2012).
    • 42. Bashyal S, Seo JE, Keum T, Noh G, Lamichhane S, Lee S. Development, characterization, and ex vivo assessment of elastic liposomes for enhancing the buccal delivery of insulin. Pharmaceutics 13(4) (2021).
    • 43. Smistad G, Jacobsen J, Sande SA. Multivariate toxicity screening of liposomal formulations on a human buccal cell line. Int. J. Pharm. 330(1–2), 14–22 (2007).
    • 44. Okafor NI, Ngoepe M, Noundou XS, Maçedo Krause RW. Nano-enabled liposomal mucoadhesive films for enhanced efavirenz buccal drug delivery. J. Drug Deliv. Sci. Technol. 54, doi: 10.1016/j.jddst.2019.101312 (2019) (Online).
    • 45. Zewail MB, F Asaad G, Swellam SM et al. Design, characterization and in vivo performance of solid lipid nanoparticles (SLNs)-loaded mucoadhesive buccal tablets for efficient delivery of Lornoxicam in experimental inflammation. Int. J. Pharm. 624, doi: 10.1016/j.ijpharm.2022.122006 (2022) (Online).
    • 46. Tzanova MM, Hagesaether E, Tho I. Solid lipid nanoparticle-loaded mucoadhesive buccal films – critical quality attributes and in vitro safety and efficacy. Int. J. Pharm. 592, doi: 10.1016/j.ijpharm.2020.120100 (2021) (Online).
    • 47. Kraisit P, Hirun N, Mahadlek J, Limmatvapirat S. Fluconazole-loaded solid lipid nanoparticles (SLNs) as a potential carrier for buccal drug delivery of oral candidiasis treatment using the Box–Behnken design. J. Drug Deliv. Sci. Technol. 63, doi: 10.1016/j.jddst.2021.102437 (2021) (Online).
    • 48. Ho HN, Le HH, Le TG et al. Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery. Int. J. Biol. Macromol. 194, 1010–1018 (2022).
    • 49. Jeitler R, Glader C, Tetyczka C et al. Investigation of cellular interactions of lipid-structured nanoparticles with oral mucosal epithelial cells. Front. Mol. Biosci. 9, doi: 10.3389/fmolb.2022.917921 (2022) (Online).
    • 50. Rahbarian M, Mortazavian E, Dorkoosh FA, Rafiee Tehrani M. Preparation, evaluation and optimization of nanoparticles composed of thiolated triethyl chitosan: a potential approach for buccal delivery of insulin. J. Drug Deliv. Sci. Technol. 44, 254–263 (2018).
    • 51. Amin MK, Boateng JS. Enhancing stability and mucoadhesive properties of chitosan nanoparticles by surface modification with sodium alginate and polyethylene glycol for potential oral mucosa vaccine delivery. Mar. Drugs 20(3), 156 (2022).
    • 52. Al-Nemrawi NK, Alsharif SSM, Alzoubi KH, Alkhatib RQ. Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films. Pharm. Dev. Technol. 24(8), 967–974 (2019).
    • 53. Suh JW, Lee JS, Ko S, Lee HG. Preparation and characterization of mucoadhesive buccal nanoparticles using chitosan and dextran sulfate. J. Agric. Food Chem. 64(26), 5384–5388 (2016).
    • 54. Goldberg M, Manzi A, Conway P et al. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat. Commun. 13(1), 1–14 (2022).
    • 55. Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int. J. Pharm. 428(1–2), 143–151 (2012).
    • 56. Giovino C, Ayensu I, Tetteh J, Boateng JS. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf. B Biointerfaces 112, 9–15 (2013).
    • 57. Ho HN, Nguyen VAT, Ho NAT, Le HH. Development of a hydrogel containing metronidazole-loaded Eudragit RS 100 nanoparticles for buccal drug delivery. Trop. J. Pharm. Res. 22(6), 1147–1154 (2023).
    • 58. Castro PM, Baptista P, Madureira AR, Sarmento B, Pintado ME. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int. J. Pharm. 547(1–2), 593–601 (2018).
    • 59. Castro PM, Baptista P, Zuccheri G, Madureira AR, Sarmento B, Pintado ME. Film-nanoparticle composite for enhanced oral delivery of alpha-casozepine. Colloids Surf. B Biointerfaces 181, 149–157 (2019).
    • 60. Castro PM, Sousa F, Magalhães R et al. Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules. Carbohydr. Polym. 194, 411–421 (2018).
    • 61. Liang H, Huang Q, Zhou B et al. Self-assembled zein–sodium carboxymethyl cellulose nanoparticles as an effective drug carrier and transporter. J. Mater. Chem. B 3(16), 3242–3253 (2015).
    • 62. Wang K, Liu T, Lin R et al. Preparation and in vitro release of buccal tablets of naringenin-loaded MPEG-PCL nanoparticles. RSC Adv. 4(64), 33672–33679 (2014).
    • 63. Rodrigues DA, Miguel SP, Loureiro J, Ribeiro M, Roque F, Coutinho P. Oromucosal alginate films with zein nanoparticles as a novel delivery system for digoxin. Pharmaceutics 13(12), 2030 (2021).
    • 64. Mašek J, Lubasová D, Lukáč R et al. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles – important step towards effective mucosal vaccines. J. Control. Rel. 249, 183–195 (2017).
    • 65. Hashem HM, Motawea A, Kamel AH, Bary EMA, Hassan SSM. Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine. Sci. Rep. 12(1), 1–16 (2022).
    • 66. Zhou L, Li A, Wang H, Sun W, Zuo S, Li C. Preparation and characterization of luteolin-loaded MPEG-PCL-g-PEI micelles for oral Candida albicans infection. J. Drug Deliv. Sci. Technol. 63, doi: 10.1016/j.jddst.2021.102454 (2021) (Online).
    • 67. de Souza Ferreira SB, Braga G, de Oliveira ÉL et al. Colloidal systems composed of poloxamer 407, different acrylic acid derivatives and curcuminoids: optimization of preparation method, type of bioadhesive polymer and storage conditions. J. Drug Deliv. Sci. Technol. 57, doi: 10.1016/j.jddst.2020.101686 (2020) (Online).
    • 68. Ouellette M, Masse F, Lefebvre-Demers M et al. Insights into gold nanoparticles as a mucoadhesive system. Sci. Rep. 8(1), 1–15 (2018).
    • 69. Essawy MM, El-Sheikh SM, Raslan HS et al. Function of gold nanoparticles in oral cancer beyond drug delivery: implications in cell apoptosis. Oral Dis. 27(2), 251–265 (2021).
    • 70. Wang S, Jiang L, Meng S et al. Hollow mesoporous silica nanoparticles-loaded ion-crosslinked bilayer films with excellent mechanical properties and high bioavailability for buccal delivery. Int. J. Pharm. 624, doi: 10.1016/j.ijpharm.2022.122056 (2022) (Online).
    • 71. Yuan Q, Fu Y, Kao WJ, Janigro D, Yang H. Transbuccal delivery of CNS therapeutic nanoparticles: synthesis, characterization, and in vitro permeation studies. ACS Chem. Neurosci. 2(11), 676–683 (2011).
    • 72. Lai SK, O'Hanlon DE, Harrold S et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. USA 104(5), 1482–1487 (2007).
    • 73. Schuster BS, Ensign LM, Allan DB, Suk JS, Hanes J. Particle tracking in drug and gene delivery research: state-of-the-art applications and methods. Adv. Drug. Deliv. Rev. 91, 70–91 (2015).
    • 74. McCarron PA, Donnelly RF, Canning PE, McGovern JG, Jones DS. Bioadhesive, non-drug-loaded nanoparticles as modulators of candidal adherence to buccal epithelial cells: a potentially novel prophylaxis for candidosis. Biomaterials 25(12), 2399–2407 (2004).
    • 75. Rao S, Song Y, Peddie F, Evans AM. Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs. Int. J. Nanomed. 6, 1245–1251 (2011).
    • 76. Ourique AF, Pohlmann AR, Guterres SS, Beck RCR. Tretinoin-loaded nanocapsules: preparation, physicochemical characterization, and photostability study. Int. J. Pharm. 352(1–2), 1–4 (2008).
    • 77. Morales JO, Huang S, Williams RO, McConville JT. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids Surf. B Biointerfaces 122, 38–45 (2014).
    • 78. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur. J. Pharm. Biopharm. 77(2), 187–199 (2011).
    • 79. Salehi S, Boddohi S. New formulation and approach for mucoadhesive buccal film of rizatriptan benzoate. Prog. Biomater. 6(4), 175–187 (2017).
    • 80. Boateng J, Mani J, Kianfar F. Improving drug loading of mucosal solvent cast films using a combination of hydrophilic polymers with amoxicillin and paracetamol as model drugs. Biomed. Res. Int. 2013 (2013).
    • 81. Silva BMA, Borges AF, Silva C, Coelho JFJ, Simões S. Mucoadhesive oral films: the potential for unmet needs. Int. J. Pharm. 494(1), 537–551 (2015).
    • 82. Shah RB, Patel M, Maahs DM, Shah VN. Insulin delivery methods: past, present and future. Int. J. Pharm. Investig. 6(1), 1 (2016).
    • 83. Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur. J. Pharm. Sci. 182 (2023).
    • 84. Nagai T, Machida Y. Buccal delivery systems using hydrogels. Adv. Drug Deliv. Rev. 11(1–2), 179–191 (1993).
    • 85. Russo E, Selmin F, Baldassari S et al. A focus on mucoadhesive polymers and their application in buccal dosage forms. J. Drug Deliv. Sci. Technol. 32, 113–125 (2016).
    • 86. Singh B, Pal L. Radiation crosslinking polymerization of sterculia polysaccharide–PVA–PVP for making hydrogel wound dressings. Int. J. Biol. Macromol. 48(3), 501–510 (2011).
    • 87. Mahmoud GA, Ali AEH, Raafat AI, Badawy NA, Elshahawy MF. Development of (acrylic acid/polyethylene glycol)-zinc oxide mucoadhesive nanocomposites for buccal administration of propranolol HCl. Radiat. Phys. Chem. Oxf. 147, 18–26 (2018).
    • 88. El-Hag Ali A, Alarifi AS. Swelling and drug release profile of poly(2-ethyl-2-oxazoline)-based hydrogels prepared by gamma radiation-induced copolymerization. J. Appl. Polym. Sci. 120(5), 3071–3077 (2011).
    • 89. Hearnden V, Sankar V, Hull K et al. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv. Drug Deliv. Rev. 64(1), 16–28 (2012).
    • 90. Fini A, Bergamante V, Ceschel GC. Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics 3(4), 665–679 (2011).
    • 91. Cook SL, Bull SP, Methven L, Parker JK, Khutoryanskiy VV. Mucoadhesion: a food perspective. Food Hydrocoll. 72, 281–296 (2017).
    • 92. Ashri LY, Abou El Ela AESF, Ibrahim MA, Alshora DH, Naguib MJ. Optimization and evaluation of chitosan buccal films containing tenoxicam for treating chronic periodontitis: in vitro and in vivo studies. J. Drug Deliv. Sci. Technol. 57, doi: 10.1016/j.jddst.2020.101720 (2020) (Online).
    • 93. Hirpara MR, Manikkath J, Sivakumar K et al. Long circulating PEGylated-chitosan nanoparticles of rosuvastatin calcium: development and in vitro and in vivo evaluations. Int. J. Biol. Macromol. 107(Pt B), 2190–2200 (2018).
    • 94. Calvo P, Vila-Jato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 153(1), 41–50 (1997).
    • 95. Mahdizadeh Barzoki Z, Emam-Djomeh Z, Mortazavian E et al. Determination of diffusion coefficient for released nanoparticles from developed gelatin/chitosan bilayered buccal films. Int. J. Biol. Macromol. 112, 1005–1013 (2018).
    • 96. Mortazavian E, Amini M, Dorkoosh FA et al. Preparation, design for optimization and in vitro evaluation of insulin nanoparticles integrating thiolated chitosan derivatives. J. Drug Deliv. Sci. Technol. 24(1), 40–49 (2014).
    • 97. Abdelhaleem Ali AM, Abo El-Enin HA. In-vitro/in-vivo evaluation of paclitaxel freeze-dried micellar nanoparticles intended for buccal delivery. J. Drug Deliv. Sci. Technol. 62, doi: 10.1016/j.jddst.2021.102424 (2021) (Online).
    • 98. Lv Q, Shen C, Li X et al. Mucoadhesive buccal films containing phospholipid-bile salts-mixed micelles as an effective carrier for cucurbitacin B delivery. Drug Deliv. 22(3), 351–358 (2015).
    • 99. Gavin A, Pham JT, Wang D, Brownlow B, Elbayoumi TA. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics. Int. J. Nanomed. 10(1), 1569–1584 (2015).
    • 100. Itin C, Komargodski R, Domb AJ, Hoffman A. Controlled delivery of apomorphine through buccal mucosa, towards a noninvasive administration method in Parkinson's disease: a preclinical mechanistic study. J. Pharm. Sci. 109(9), 2729–2734 (2020).
    • 101. Dong Z, Lin Y, Xu S et al. NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration. Mater. Des. 225, doi: 10.1016/j.matdes.2022.111487 (2023) (Online).
    • 102. Rana P, Murthy RSR. Formulation and evaluation of mucoadhesive buccal films impregnated with carvedilol nanosuspension: a potential approach for delivery of drugs having high first-pass metabolism. Drug Deliv. 20(5), 224–235 (2013).
    • 103. Dhanuthai K, Rojanawatsirivej S, Thosaporn W et al. Oral cancer: a multicenter study. Med. Oral Patol. Oral Cir. Bucal. 23(1), e23–e29 (2018).
    • 104. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 6(1), 1–22 (2020).
    • 105. Anand U, Dey A, Chandel AKS et al. Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 10(4), 1367–1401 (2022).
    • 106. Moorthi C, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci. 14(1), 67–77 (2011).
    • 107. Manikkath J, Jishnu PV, Wich PR, Manikkath A, Radhakrishnan R. Nanoparticulate strategies for the delivery of miRNA mimics and inhibitors in anticancer therapy and its potential utility in oral submucous fibrosis. Nanomedicine (Lond.) 17(3), 181–195 (2022).
    • 108. Elsayed A, Al-Remawi M, Jaber N, Abu-Salah KM. Advances in buccal and oral delivery of insulin. Int. J. Pharm. 633 (2023).
    • 109. Banerjee A, Ibsen K, Brown T, Chen R, Agatemor C, Mitragotri S. Ionic liquids for oral insulin delivery. Proc. Natl Acad. Sci. USA 115(28), 7296–7301 (2018).
    • 110. Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21(7), 426–440 (2021).
    • 111. Kitamoto S, Nagao-Kitamoto H, Jiao Y et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182(2), 447–462.e14 (2020).