We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

CD44 targeted delivery of hyaluronic acid-coated polymeric nanoparticles against colorectal cancer

    Niraj Phatak

    School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India

    ,
    Sankha Bhattacharya

    *Author for correspondence: Tel.: +91 787 877 7207;

    E-mail Address: sankhabhatt@gmail.com

    School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India

    ,
    Disha Shah

    School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India

    ,
    Laxmi Manthalkar

    School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India

    ,
    Putrevu Sreelaya

    School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India

    &
    Arinjay Jain

    School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India

    Published Online:https://doi.org/10.2217/nnm-2023-0145

    Aim: To develop hyaluronic acid (HA)-coated poly-lactic-co-glycolic acid (PLGA)-polysarcosine (PSAR) coupled sorafenib tosylate (SF) polymeric nanoparticles for targeted colon cancer therapy. Materials & methods: PLGA–PSAR shells were encapsulated with SF via nanoprecipitation. Interactions were examined with transmission electron microscopy, revealing formulation component interactions. Results: The optimized HA-coated polymeric nanoparticles (238.8 nm, -6.1 mV, 68.361% entrapment) displayed enhanced controlled release of SF. These formulations showed superior cytotoxicity against HCT116 cell lines compared with free drug (p < 0.05). In vivo tests on male albino Wistar rats demonstrated improved pharmacokinetics, targeting and biocompatibility. HA-coated PLGA–PSAR-coupled SF polymeric nanoparticles hold potential for effective colorectal therapy. Conclusion: Colon cancer may be precisely targeted by HA-coated PLGA–PSA-coupled SF polymeric nanoparticles.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Buccafusca G, Proserpio I, Tralongo AC et al. Early colorectal cancer: diagnosis, treatment and survivorship care. Crit. Rev. Oncol. Hematol. 136, 20–30 (2019).
    • 2. Teixido C, Castillo P, Martinez-Vila C et al. Molecular markers and targets in melanoma. Cells 10(9), 2320 (2021).
    • 3. Sarandria N. A literature review in immuno-oncology: pathophysiological and clinical features of colorectal cancer and the role of the doctor–patient interaction. J. Cancer Ther. 13(12), 654–684 (2022).
    • 4. Lewandowska A, Religioni U, Czerw A et al. Nutritional treatment of patients with colorectal cancer. Int. J. Environ. Res. Public Health 19(11), 6881 (2022).
    • 5. Chavda J, Bhatt H. Systemic review on B-RafV600E mutation as potential therapeutic target for the treatment of cancer. Eur. J. Med. Chem. 206, 112675 (2020).
    • 6. Yosef H, Frick T, Hammoud M et al. Exploring the efficacy and cellular uptake of sorafenib in colon cancer cells by Raman micro-spectroscopy. Analyst 143(24), 6069–6078 (2018).
    • 7. Ahiwale RJ, Chellampillai B, Pawar AP. Investigation of novel sorafenib tosylate loaded biomaterial based nano-cochleates dispersion system for treatment of hepatocellular carcinoma. J. Dispersion Sci. Technol. 43(10), 1568–1586 (2022).
    • 8. Pratt RL. Hyaluronan and the fascial frontier. Int. J. Mol. Sci. 22(13), 6845 (2021).
    • 9. Castaño-Amores C, Nieto-Gómez P, Nieto-Sánchez MT, Álvarez-Sánchez R. Práctica clínica en prevención de migraña con anticuerpos monoclonales del péptido relacionado con el gen calcitonina: evidencias de casos reales. Ars Pharmaceutica 63(4), 311–319 (2022).
    • 10. Lee SY, Kang MS, Jeong WY et al. Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers 12(4), 940 (2020). •• Explores the development of hyaluronic acid (HA)-coated poly-lactic-co-glycolic acid–polysarcosine–sorafenib tosylate (PLGA–PSAR–SF) nanoparticles for targeted colon cancer therapy. These nanoparticles offer controlled drug release, enhanced cytotoxicity against HCT116 cells, improved in vivo pharmacokinetics, targeting and biocompatibility, making them promising for colorectal therapy. The article findings have significant influence on our work.
    • 11. Settanni G, Schäfer T, Muhl C et al. Poly-sarcosine and poly (ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations. Comput. Struct. Biotechnol. J. 16, 543–550 (2018).
    • 12. Wu F, Zhou Y, Li L et al. Computational approaches in preclinical studies on drug discovery and development. Front. Chem. 8, 726 (2020).
    • 13. Tiwari A, Modi SJ, Gabhe SY, Kulkarni VM. Evaluation of piperine against cancer stem cells (CSCs) of hepatocellular carcinoma: Insights into epithelial-mesenchymal transition (EMT). Bioorg. Chem. 110, 1–17 (2021).
    • 14. Dhawan V, Lokras A, Joshi G et al. Polysaccharide and monosaccharide guided liver delivery of sorafenib tosylate –a nano-strategic approach and comparative assessment of hepatospecificity. Int. J. Pharm. 625, 1–16 (2022). •• Demonstrates targeted, efficient SF delivery using nanoparticles, enhancing cancer therapy precision and efficacy.
    • 15. Giammona G, Drago SE, Calabrese G et al. Galactosylated polymer/gold nanorods nanocomposites for sustained and pulsed chemo-photothermal treatments of hepatocarcinoma. Pharmaceutics 14(11), 2503 (2022).
    • 16. Bhattacharya S, Anjum MM, Patel KK. Gemcitabine cationic polymeric nanoparticles against ovarian cancer: formulation, characterization, and targeted drug delivery. Drug Deliv. 29(1), 1060–1074 (2022). •• Explores similar nanoparticle-based targeted drug-delivery strategies for cancer treatment.
    • 17. Almoustafa HA, Alshawsh MA, Al-Suede FSR et al. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice. Polymers 15(2), 284 (2023). •• Demonstrates the effectiveness of HA-coated polymeric nanoparticles in inhibiting breast cancer metastasis in mice, offering potential insights for our research in nanoparticle-based cancer treatments.
    • 18. Kale SA, Shaikh KS. Validated UV-vis spectrophotometric method for the estimation of sorafenib tosylate in bulk and nanoparticles. Int. J. Health Sci. 6(Suppl. 3), 4011–4019 (2022).
    • 19. Dahiya M, Awasthi R, Dua K, Dureja H. Sorafenib tosylate loaded superparamagnetic nanoparticles: development, optimization and cytotoxicity analysis on HepG2 human hepatocellular carcinoma cell line. J. Drug Deliv. Sci. Technol. 79, 1–19 (2023).
    • 20. Li N, Chen Y, Sun H et al. Decreasing acute toxicity and suppressing colorectal carcinoma using sorafenib-loaded nanoparticles. Pharm. Dev. Technol. 25(5), 556–565 (2020).
    • 21. Caputo TM, Cusano AM, Principe S et al. Sorafenib-loaded PLGA carriers for enhanced drug delivery and cellular uptake in liver cancer cells. Int. J. Nanomed. 18, 4121–4142 (2023).
    • 22. Shukla SK, Kulkarni NS, Farrales P et al. Sorafenib loaded inhalable polymeric nanocarriers against non-small-cell lung cancer. Pharm. Res. 37, 1–19 (2020). • Presents the development of inhalable polymeric nanocarriers for delivering sorafenib.
    • 23. Gao X, Jiang P, Zhang Q et al. Peglated-H1/pHGFK1 nanoparticles enhance anti-tumor effects of sorafenib by inhibition of drug-induced autophagy and stemness in renal cell carcinoma. J. Exp. Clin. Cancer Res. 38(1), 1–15 (2019).
    • 24. Wu H, Wang C, Sun J et al. Self-assembled and self-monitored sorafenib/indocyanine green nanodrug with synergistic antitumor activity mediated by hyperthermia and reactive oxygen species-induced apoptosis. ACS Appl. Mater. Interfaces 11(47), 43996–44006 (2019).
    • 25. Poojari R, Sawant AV, Kini S et al. Antihepatoma activity of multifunctional polymeric nanoparticles via inhibition of microtubules and tyrosine kinases. Nanomedicine 15(04), 381–396 (2020).
    • 26. Varshosaz J, Sadri F, Rostami M et al. Synthesis of pectin-deoxycholic acid conjugate for targeted delivery of anticancer drugs in hepatocellular carcinoma. Int. J. Biol. Macromol. 139, 665–677 (2019).
    • 27. Palomba F, Genovese D, Rampazzo E et al. PluS nanoparticles loaded with sorafenib: synthetic approach and their effects on endothelial cells. ACS Omega 4(9), 13962–13971 (2019).
    • 28. Sarwar U, Naeem M, Nurjis F et al. Ultrasound-mediated in vivo biodistribution of coumarin-labeled sorafenib-loaded liposome-based nanotheranostic system. Nanomedicine 17(25), 1909–1927 (2022).
    • 29. Gopakumar L, Sreeranganathan M, Chappan S et al. Enhanced oral bioavailability and antitumor therapeutic efficacy of sorafenib administered in core–shell protein nanoparticle. Drug Deliv. Transl. Res. 12(11), 2824–2837 (2022).
    • 30. Donthi MR, Munnangi SR, Krishna KV et al. Formulating ternary inclusion complex of sorafenib tosylate using β-cyclodextrin and hydrophilic polymers: physicochemical characterization and in vitro assessment. AAPS PharmSciTech 23(7), 254 (2022).
    • 31. Xiao B, Han MK, Viennois E et al. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7(42), 17745–17755 (2015).
    • 32. Bertrand N, Wu J, Xu X et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).
    • 33. Babos G, Biró E, Meiczinger M, Feczkó T. Dual drug delivery of sorafenib and doxorubicin from PLGA and PEG-PLGA polymeric nanoparticles. Polymers 10(8), 895 (2018).
    • 34. Abdellatif AA, Ali AT, Bouazzaoui A et al. Formulation of polymeric nanoparticles loaded sorafenib; evaluation of cytotoxicity, molecular evaluation, and gene expression studies in lung and breast cancer cell lines. Nanotechnol. Rev. 11(1), 987–1004 (2022).
    • 35. Kalepu S, Nekkanti V. Improved delivery of poorly soluble compounds using nanoparticle technology: a review. Drug Deliv. Transl. Res. 6, 319–332 (2016).
    • 36. Poojari R, Kini S, Srivastava R, Panda D. Intracellular interactions of electrostatically mediated layer-by-layer assembled polyelectrolytes based sorafenib nanoparticles in oral cancer cells. Colloids Surf. B Biointerfaces 143, 131–138 (2016).
    • 37. Guan Q, Guo R, Huang S et al. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy. J. Control. Rel. 320, 392–403 (2020).
    • 38. Hu B, Sun D, Sun C et al. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 468(4), 525–532 (2015).
    • 39. Bahman A, Abaza M-S, Khoushaish S, Al-Attiyah RJ. Therapeutic efficacy of sorafenib and plant-derived phytochemicals in human colorectal cancer cells. BMC Complement. Med. Ther. 23(1), 1–24 (2023).
    • 40. Chen Y, Li N, Xu B et al. Polymer-based nanoparticles for chemo/gene-therapy: evaluation its therapeutic efficacy and toxicity against colorectal carcinoma. Biomed. Pharmacother. 118, 1–19 (2019).
    • 41. Lazzari S, Moscatelli D, Codari F et al. Colloidal stability of polymeric nanoparticles in biological fluids. J. Nanoparticle Res. 14, 1–10 (2012).
    • 42. Fanciullino R, Ciccolini J, Milano G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: a focus on nano-albumin-bound drugs. Crit. Rev. Oncol. Hematol. 88(3), 504–513 (2013).