We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Polymeric micelles loaded in situ gel with prednisolone acetate for ocular inflammation: development and evaluation

    Nikita Kaushal

    M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana

    ,
    Manish Kumar

    *Author for correspondence:

    E-mail Address: manish_singh17@rediffmail.com

    School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, 142024, India

    ,
    Abhishek Tiwari

    Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India

    ,
    Varsha Tiwari

    Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India

    ,
    Kamini Sharma

    M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana

    ,
    Ajay Sharma

    Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India

    ,
    Arya Lakshmi Marisetti

    Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India

    ,
    Madan Mohan Gupta

    School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago

    ,
    Imran Kazmi

    Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

    ,
    Sami I Alzarea

    Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia

    ,
    Waleed Hassan Almalki

    Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia

    &
    Gaurav Gupta

    **Author for correspondence:

    E-mail Address: gauravpharma25@gmail.com

    School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India

    Center for Global Health research (CGHR), Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India

    Published Online:https://doi.org/10.2217/nnm-2023-0123

    Aim: Our study developed a prednisolone acetate polymeric micelles (PM) system for ocular inflammation related to allergic uveitis. Methods: For PM development, a thin-film hydration procedure was used. Irritation, in vitro, ex vivo transcorneal permeation, micelle size, entrapment efficiency and histology within the eye were all calculated for PM. Results: The optimized in situ gel (A4) showed superior ex vivo transcorneal permeation with zero-order kinetics. Conclusion: The developed formulation could be a promising candidate for treating anterior uveitis via topical application to the anterior segment of the eye.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Al Khateb K, Ozhmukhametova EK, Mussin MN et al. In situ gelling systems based on pluronic F127/pluronic F68 formulations for ocular drug delivery. Int. J. Pharm. 502(1–2), 70–79 (2016).
    • 2. Alami-Milani M, Zakeri-Milani P, Valizadeh H, Salehi R, Jelvehgari M. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iranian J. Basic Med. Sci. 21(2), 153–164 (2018).
    • 3. Alshamsan A, Abul Kalam M, Vakili MR et al. Treatment of endotoxin-induced uveitis by topical application of cyclosporine a-loaded PolyGel™ in rabbit eyes. Int. J. Pharm. 569, 118573 (2019).
    • 4. Augusto de Castro M, Henrique Reis P, Fernandes C et al. Thermoresponsive in-situ gel containing hyaluronic acid and indomethacin for the treatment of corneal chemical burn. Int. J. Pharm. 631, 122468 (2023).
    • 5. Charbe NB, Amnerkar ND, Ramesh B et al. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharmaceutica Sinica. B 10(11), 2075–2109 (2020).
    • 6. Devi S, Saini V, Kumar M, Bhatt S, Gupta S, Deep A. A novel approach of drug localization through development of polymeric micellar system containing azelastine HCl for ocular delivery. Pharm. Nanotechnol. 7(4), 314–327 (2019).
    • 7. Kaur J, Gulati M, Famta P et al. Polymeric micelles loaded with glyburide and vanillic acid: I. Formulation development, in-vitro characterization and bioavailability studies. Int. J. Pharm. 624, 121987 (2022).
    • 8. Duan Y, Cai X, Du H, Zhai G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surfaces B. Biointerf. 128, 322–330 (2015).
    • 9. Famili A, Kahook MY, Park D. A combined micelle and poly(serinol hexamethylene urea)-co-poly(N-isopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system. Macromolec. Biosci. 14(12), 1719–1729 (2014).
    • 10. Kaur J, Gulati M, Gowthamarajan K et al. Combination therapy of vanillic acid and oxaliplatin co-loaded in polysaccharide based functionalized polymeric micelles could offer effective treatment for colon cancer: a hypothesis. Med. Hypotheses 156, 110679 (2021).
    • 11. Mofidfar M, Abdi B, Ahadian S et al. Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int. J. Pharmaceut. 607, 120924 (2021).
    • 12. Zhao X, Seah I, Xue K et al. Anti-angiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv. Mater. 34, 2108360 (2022).
    • 13. Kurnik I, D'Angelo N, Mazzola P et al. Polymeric micelles using cholinium-based ionic liquids for the encapsulation and drug release of hydrophobic molecules. Biomat. Sci. 9(9), (2021).
    • 14. Desai A, Chaon B, Berkenstock M. Neurosarcoidosis and ocular inflammation: a case series and literature review. J. Neuro-Ophthalmol. 41(2), e259–e266 (2020).
    • 15. Xing Y, Zhu L, Zhang K, Li T, Huang S. Nanodelivery of triamcinolone acetonide with PLGA-chitosan nanoparticles for the treatment of ocular inflammation. Artif. Cell. Nanomed. Biotechnol. 49(1), 308–316 (2021).
    • 16. Kaur J, Gulati M, Kapoor B et al. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chemico-Biol. Interact. 361, 109960 (2022).
    • 17. Mandal A, Bisht R, Rupenthal I, Mitra A. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J. Control. Rel. 248, 96–116 (2017).
    • 18. Ghezzi M, Pescina S, Padula C et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Rel. 332, 312–336 (2021).
    • 19. Parra A, Jarak I, Santos A, Veiga F, Figueiras A. Polymeric micelles: a promising pathway for dermal drug delivery. Materials (Basel, Switzerland) 14(23), (2021).
    • 20. Zhang X, Wei D, Xu Y, Zhu Q. Hyaluronic acid in ocular drug delivery. Carbohydr. Polym. 264, 118006 (2021).
    • 21. Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for polymers used in ocular drug delivery. Front. Med. 8, 787644 (2021).
    • 22. Dave RS, Goostrey TC, Ziolkowska M, Czerny-Holownia S, Hoare T, Sheardown H. Ocular drug delivery to the anterior segment using nanocarriers: a mucoadhesive/mucopenetrative perspective. J. Control. Rel. 336, 71–88 (2021).
    • 23. Fang G, Yang X, Wang Q, Zhang A, Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater. Sci. Eng. C. Mater. Biol. Appl. 127, 112212 (2021).
    • 24. Dosmar E, Walsh J, Doyel M et al. Targeting ocular drug delivery: an examination of local anatomy and current approaches. Bioengineering (Basel, Switzerland) 9(1), (2022).
    • 25. Tiwari R, Sethiya NK, Gulbake AS, Mehra NK, Murty USN, Gulbake A. A review on albumin as a biomaterial for ocular drug delivery. Int. J. Biol. Macromol. 191, 591–599 (2021).
    • 26. Tundisi LL, Mostaço GB, Carricondo PC, Petri DFS. Hydroxypropyl methylcellulose: physicochemical properties and ocular drug delivery formulations. Eur. J. Pharmaceut. Sci. 159, 105736 (2021).
    • 27. Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev. Industr. Pharm. 39(11), 1599–1617 (2013).
    • 28. Sipos B, Budai-Szűcs M, Kókai D et al. Erythromycin-loaded polymeric micelles: in situ gel development, in vitro and ex vivo ocular investigations. Eur. J. Pharmaceut. Biopharmaceut. 180, 81–90 (2022).
    • 29. Sipos B, Csóka I, Ambrus R et al. Spray-dried indomethacin-loaded polymeric micelles for the improvement of intestinal drug release and permeability. Eur. J. Pharmaceut. Sci. 174, 106200 (2022).
    • 30. Suksiriworapong J, Rungvimolsin T, A-Gomol A, Junyaprasert VB, Chantasart D. Development and characterization of lyophilized diazepam-loaded polymeric micelles. AAPS Pharm. Sci. Tech. 15(1), 52–64 (2014).
    • 31. Valenzuela-Oses JK, García MC, Feitosa VA et al. Development and characterization of miltefosine-loaded polymeric micelles for cancer treatment. Mater. Sci. Eng. C. Mater. Biol. Appl. 81, 327–333 (2017).
    • 32. Wang MY, Qu Y, Hu DR et al. Methotrexate-loaded biodegradable polymeric micelles for lymphoma therapy. Int. J. Pharm. 557, 74–85 (2019).
    • 33. Zhao L, Shi Y, Zou S, Sun M, Lil L, Zhail G. Formulation and in vitro evaluation of quercetin loaded polymeric micelles composed of pluronic P123 and D-a-tocopheryl polyethylene glycol succinate. J. Biomed. Nanotechnol. 7(3), 358–365 (2011).
    • 34. Akhter MH, Ahmad I, Alshahrani MY et al. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels (Basel, Switzerland) 8(2), (2022).
    • 35. Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent advances in the excipients used for modified ocular drug delivery. Materials (Basel, Switzerland) 14(15), (2021).
    • 36. Gupta B, Mishra V, Gharat S, Momin M, Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals (Basel, Switzerland) 14(11), (2021).
    • 37. Berillo D, Zharkinbekov Z, Kim Y, Raziyeva K, Temirkhanova K, Saparov A. Stimuli-responsive polymers for transdermal, transmucosal and ocular drug delivery. Pharmaceutics 13(12), (2021).
    • 38. Bhandari A. Ocular fluid mechanics and drug delivery: a review of mathematical and computational models. Pharm. Res. 38(12), 2003–2033 (2021).
    • 39. Bodoki AE, Iacob BC, Dinte E, Vostinaru O, Samoila O, Bodoki E. Perspectives of molecularly imprinted polymer-based drug delivery systems in ocular therapy. Polymers 13(21), (2021).
    • 40. Conrady CD, Yeh S. A review of ocular drug delivery platforms and drugs for infectious and noninfectious uveitis: the past, present, and future. Pharmaceutics 13(8), (2021).
    • 41. Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM. Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Deliv. 25(1), 484–492 (2018).
    • 42. Abdollahi AR, Firouzian F, Haddadi R, Nourian A. Indomethacin loaded dextran stearate polymeric micelles improve adjuvant-induced arthritis in rats: design and in vivo evaluation. Inflammopharmacology 29(1), 107–121 (2021).
    • 43. Bagheri M, Fens MH, Kleijn TG et al. In vitro and in vivo studies on HPMA-based polymeric micelles loaded with curcumin. Mol. Pharmaceut. 18(3), 1247–1263 (2021).
    • 44. Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Rel. 190, 465–476 (2014). • Evolution of drug-loaded polymeric micelles in clinical research.
    • 45. Deshmukh AS, Chauhan PN, Noolvi MN et al. Polymeric micelles: basic research to clinical practice. Int. J. Pharm. 532(1), 249–268 (2017).
    • 46. Fan H, Zhang P, Zhou L et al. Naringin-loaded polymeric micelles as buccal tablets: formulation, characterization, in vitro release, cytotoxicity and histopathology studies. Pharmaceut. Develop. Technol. 25(5), 547–555 (2020).
    • 47. Ghezzi M, Ferraboschi I, Delledonne A et al. Cyclosporine-loaded micelles for ocular delivery: investigating the penetration mechanisms. J. Control. Rel. 349, 744–755 (2022).
    • 48. Gupta A, Costa AP, Xu X et al. Formulation and characterization of curcumin loaded polymeric micelles produced via continuous processing. Int. J. Pharm. 583, 119340 (2020).
    • 49. Janas C, Mostaphaoui Z, Schmiederer L, Bauer J, Wacker MG. Novel polymeric micelles for drug delivery: material characterization and formulation screening. Int. J. Pharm. 509(1–2), 197–207 (2016).
    • 50. Madan JR, Dere SG, Awasthi R, Dua K. Efavirenz loaded mixed polymeric micelles: formulation, optimization, and in vitro characterization. Assay Drug Dev. Technol. 19(5), 322–334 (2021).
    • 51. Majumder N, Das NG, Das SK. Polymeric micelles for anticancer drug delivery. Ther. Deliv. 11(10), 613–635 (2020).
    • 52. Mochida Y, Cabral H, Kataoka K. Polymeric micelles for targeted tumor therapy of platinum anticancer drugs. Expert Opin. Drug Deliv. 14(12), 1423–1438 (2017). • Utilizes polymeric micelles for precision delivery of platinum anticancer drugs to tumors.
    • 53. Nardi M, Sarubbi E, Somavarapu S. Eco-friendly synthesis of PEtOz-PA: a promising polymer for the formulation of curcumin-loaded micelles. Molecules (Basel, Switzerland) 27(12), (2022).
    • 54. Patil PH, Wankhede PR, Mahajan HS, Zawar LR. Aripiprazole-loaded polymeric micelles: fabrication, optimization and evaluation using response surface method. Recent Pat. Drug Deliv. Formul. 12(1), 53–64 (2018).
    • 55. Saxena V, Hussain MD. Formulation and in vitro evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric mixed micelles for glioblastoma multiforme. Colloid. Surf. B. Biointerf. 112, 350–355 (2013).
    • 56. Sipos B, Csóka I, Budai-Szűcs M et al. Development of dexamethasone-loaded mixed polymeric micelles for nasal delivery. Eur. J. Pharmaceut. Sci. 166, 105960 (2021). • Created dual-polymer micelles to deliver dexamethasone via nasal route.
    • 57. Srivastava S, Kumar A, Yadav PK et al. Formulation and performance evaluation of polymeric mixed micelles encapsulated with baicalein for breast cancer treatment. Drug Develop. Industr. Pharm. 47(9), 1512–1522 (2021).
    • 58. Watanabe M, Kawano K, Yokoyama M, Opanasopit P, Okano T, Maitani Y. Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability. Int. J. Pharm. 308(1–2), 183–189 (2006).
    • 59. Wei Z, Hao J, Yuan S et al. Paclitaxel-loaded pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int. J. Pharm. 376(1–2), 176–185 (2009).
    • 60. Sharma A, Shambhwani D, Pandey S et al. Advances in lung cancer treatment using nanomedicines. ACS Omega 8(1), 10–41 (2023).
    • 61. Kaur J, Mishra V, Singh SK et al. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: breakthroughs and bottlenecks. J. Control. Rel. 334, 64–95 (2021).
    • 62. Xie YJ, Wang QL, Adu-Frimpong M et al. Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles. Drug Develop. Industr. Pharm. 45(8), 1224–1232 (2019).
    • 63. Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 15(4), 862–871 (2014).
    • 64. Kaur J, Gulati M, Zacconi F et al. Biomedical applications of polymeric micelles in the treatment of diabetes mellitus: current success and future approaches. Expert Opin. Drug Deliv. 19(7), 771–793 (2022).
    • 65. Zhou H, Qi Z, Xue X, Wang C. Novel pH-sensitive urushiol-loaded polymeric micelles for enhanced anticancer activity. Int. J. Nanomed. 15, 3851–3868 (2020).
    • 66. Zhou J, Jiang XH. Formulation conditions on the drug loading properties of polymeric micelles. Pak. J. Pharm. Sci. 32(2), 607–615 (2019).