We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Gold–semiconductor nanohybrids as advanced phototherapeutics

    Ruixue Xiao

    Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China

    ,
    Jian Zeng

    *Author for correspondence:

    E-mail Address: jjhwwyqsw@163.com

    Zhejiang Cancer Hospital, Hangzhou, 310022, PR China

    ,
    Fangyuan Li

    **Author for correspondence:

    E-mail Address: lfy@zju.edu.cn

    Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China

    World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China

    &
    Daishun Ling

    ***Author for correspondence:

    E-mail Address: dsling@sjtu.edu.cn

    Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China

    Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China

    World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China

    Published Online:https://doi.org/10.2217/nnm-2023-0118

    Phototherapeutics is gaining momentum as a mainstream treatment for cancer, with gold–semiconductor nanocomposites showing promise as potent phototherapeutic agents due to their structural tunability, biocompatibility and functional diversity. Such nanohybrids possess plasmonic characteristics in the presence of gold and the catalytic nature of semiconductor units, as well as the unexpected physicochemical properties arising from the contact interface. This perspective provides an overview of the latest research on gold–semiconductor nanocomposites for photodynamic, photothermal and photocatalytic therapy. The relationship between the spatial configuration of these nanohybrids and their practical performance was explored to deliver comprehensive insights and guidance for the design and fabrication of novel composite nanoplatforms to enhance the efficiency of phototherapeutics, promoting the development of nanotechnology-based advanced biomedical applications.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380–387 (2003).
    • 2. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 575(7782), 299–309 (2019).
    • 3. Lee HP, Gaharwar AK. Light-responsive inorganic biomaterials for biomedical applications. Adv. Sci. 7(17), (2020).
    • 4. Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50(2), 1111–1137 (2021).
    • 5. Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019).
    • 6. Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol. Cell 40(2), 253–266 (2010).
    • 7. Knavel EM, Brace CL. Tumor ablation: common modalities and general practices. Tech. Vasc. Interv. Radiol. 16(4), 192–200 (2013).
    • 8. Celli JP, Spring BQ, Rizvi I et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110(5), 2795–2838 (2010).
    • 9. Chen H, Ma A, Yin T et al. In situ photocatalysis of TiO–porphyrin-encapsulated nanosystem for highly efficient oxidative damage against hypoxic tumors. ACS Appl. Mater. Interfaces 12(11), 12573–12583 (2020).
    • 10. Zhao J, Wu W, Sun J, Guo S. Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 42(12), 5323–5351 (2013).
    • 11. Cong C, Rao C, Ma Z et al. ‘Nano-lymphatic’ photocatalytic water-splitting for relieving tumor interstitial fluid pressure and achieving hydrodynamic therapy. Mater. Horizons 7(12), 3266–3274 (2020).
    • 12. Qian C, Yu J, Chen Y et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 28(17), 3313–3320 (2016).
    • 13. Huang C, Liang C, Sadhukhan T et al. In vitro and in vivo photocatalytic cancer therapy with biocompatible iridium(III) photocatalysts. Angew. Chem. Int. Ed. 60(17), 9474–9479 (2021).
    • 14. Duo Y, Luo G, Li Z et al. Photothermal and enhanced photocatalytic therapies conduce to synergistic anticancer phototherapy with biodegradable titanium diselenide nanosheets. Small 17(40), (2021).
    • 15. Kumar A, Kim S, Nam J-M. Plasmonically engineered nanoprobes for biomedical applications. J. Am. Chem. Soc. 138(44), 14509–14525 (2016).
    • 16. Song J, Huang P, Duan H, Chen X. Plasmonic vesicles of amphiphilic nanocrystals: optically active multifunctional platform for cancer diagnosis and therapy. Acc. Chem. Res. 48(9), 2506–2515 (2015).
    • 17. Lane LA, Qian X, Nie S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115(19), 10489–10529 (2015).
    • 18. Park J-E, Kim M, Hwang J-H, Nam J-M. Golden opportunities: plasmonic gold nanostructures for biomedical applications based on the second near-infrared window. Small Methods 1(3), (2017).
    • 19. Gu Z, Zhu S, Yan L et al. Graphene-based smart platforms for combined cancer therapy. Adv. Mater. 31(9), (2019).
    • 20. Wang H, Zhang L, Chen Z et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014).
    • 21. Low J, Yu J, Jaroniec M et al. Heterojunction photocatalysts. Adv. Mater. 29(20), (2017).
    • 22. Shaviv E, Schubert O, Alves-Santos M et al. Absorption properties of metal–semiconductor hybrid nanoparticles. ACS Nano 5(6), 4712–4719 (2011).
    • 23. Zhang Z, Yates JT Jr. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012).
    • 24. Mokari T, Sztrum CG, Salant A et al. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 4(11), 855–863 (2005).
    • 25. Khon E, Mereshchenko A, Tarnovsky AN et al. Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. Nano Lett. 11(4), 1792–1799 (2011).
    • 26. Ju Y, Dong B, Yu J, Hou Y. Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. Nano Today 26, 108–122 (2019).
    • 27. Zhang Q, Lai W, Yin T et al. Investigation of the viability of cells upon co-exposure to gold and iron oxide nanoparticles. Bioconjug. Chem. 29(6), 2120–2125 (2018).
    • 28. Lv B, Zhang H, Zheng X et al. Structure-oriented catalytic radiosensitization for cancer radiotherapy. Nano Today 35, doi: 10.1016/j.nantod.2020.100988 (2020).
    • 29. Hu J, Zhou S, Sun Y et al. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 41(11), 4356–4378 (2012).
    • 30. Zeng H, Sun S. Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 18(3), 391–400 (2008).
    • 31. Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124(28), 8204–8205 (2002).
    • 32. Wang X, Zhang C, Du J et al. Enhanced generation of non-oxygen dependent free radicals by Schottky-type heterostructures of Au–Bi2S3 nanoparticles via x-ray-induced catalytic reaction for radiosensitization. ACS Nano 13(5), 5947–5958 (2019). • Schottky-type heterostructure Au–Bi2S3 leads to efficient separation of electron-hole pairs, which decomposes intracellular H2O2 into highly toxic ·OH, realizing selective radiosensitization in tumor.
    • 33. Deepagan VG, You DG, Um W et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 16(10), 6257–6264 (2016).
    • 34. He W, Kim H-K, Wamer WG et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 136(2), 750–757 (2014).
    • 35. Shan B, Wang H, Li L et al. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for in vivo photothermal tumor ablation in the second near-infrared biowindow. Theranostics 10(25), 11656–11672 (2020).
    • 36. Ji M, Xu M, Zhang W et al. Structurally well-defined Au@Cu2-xS core–shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv. Mater. 28(16), 3094–3101 (2016).
    • 37. Xia Y, Nguyen TD, Yang M et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6(9), 580–587 (2011).
    • 38. Wang C, Yin H, Dai S, Sun S. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem. Mater. 22(10), 3277–3282 (2010).
    • 39. Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437(7059), 664–670 (2005).
    • 40. Xu W, Jia J, Wang T et al. Continuous tuning of Au–Cu2O Janus nanostructures for efficient charge separation. Angew. Chem. Int. Ed. 59(49), 22246–22251 (2020).
    • 41. Wang Y, He J, Yu S, Chen H. Effect of thiolated ligands in Au nanowire synthesis. Small 13(40), (2017).
    • 42. Wang F, Cheng S, Bao Z, Wang J. Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem. Int. Ed. 52(39), 10344–10348 (2013).
    • 43. Li S, Huo H, Gao X et al. Engineering Janus gold nanorod—titania heterostructures with enhanced photocatalytic antibacterial activity against multidrug-resistant bacterial infection. Nano Res. 16(2), 2049–2058 (2023).
    • 44. Zhang Q, Zhang L, Li S et al. Designed synthesis of Au/Fe3O4@C janus nanoparticles for dual-modal imaging and actively targeted chemo-photothermal synergistic therapy of cancer cells. Chem. Eur. J. 23(68), 17242–17248 (2017).
    • 45. Chen X, Li G, Han Q et al. Rational design of branched Au–Fe3O4 Janus nanoparticles for simultaneous trimodal imaging and photothermal therapy of cancer cells. Chem. Eur. J. 23(68), 17204–17208 (2017).
    • 46. Skrabalak SE, Chen J, Sun Y et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41(12), 1587–1595 (2008).
    • 47. Liang R, Liu L, He H et al. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials 177, 149–160 (2018).
    • 48. Liu J, Zhang J. Nanointerface chemistry: lattice-mismatch-directed synthesis and application of hybrid nanocrystals. Chem. Rev. 120(4), 2123–2170 (2020).
    • 49. Zhang J, Tang Y, Lee K, Ouyang M. Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 327(5973), 1634–1638 (2010).
    • 50. Wan X, Gao Y, Eshete M et al. Simultaneous harnessing of hot electrons and hot holes achieved via n-metal-p Janus plasmonic heteronanocrystals. Nano Energy 98, doi: 10.1016/j.nanoen.2022.107217 (2022).
    • 51. Li X, Ji M, Li H et al. Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: principles and applications. Matter 2(3), 554–586 (2020).
    • 52. Cao Y, Li S, Chen C et al. Rattle-type Au@Cu2-xS hollow mesoporous nanocrystals with enhanced photothermal efficiency for intracellular oncogenic microRNA detection and chemo-photothermal therapy. Biomaterials 158, 23–33 (2018).
    • 53. Muhammed MAH, Döblinger M, Rodríguez-Fernández J. Switching plasmons: gold nanorod–copper chalcogenide core–shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J. Am. Chem. Soc. 137(36), 11666–11677 (2015).
    • 54. Lesnyak V, Brescia R, Messina GC, Manna L. Cu vacancies boost cation exchange reactions in copper selenide nanocrystals. J. Am. Chem. Soc. 137(29), 9315–9323 (2015).
    • 55. Meir N, Martín-García B, Moreels I, Oron D. Revisiting the anion framework conservation in cation exchange processes. Chem. Mater. 28(21), 7872–7877 (2016).
    • 56. Zhu H, Wang Y, Chen C et al. Monodisperse dual plasmonic Au@Cu2–xE (E=S, Se) core@shell supraparticles: aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano 11(8), 8273–8281 (2017).
    • 57. Wang H, Chen L, Feng Y, Chen H. Exploiting core–shell synergy for nanosynthesis and mechanistic investigation. Acc. Chem. Res. 46(7), 1636–1646 (2013).
    • 58. Seyedheydari F, Conley KM, Thakore V et al. Electromagnetic response of nanoparticles with a metallic core and a semiconductor shell. J. Phys. Commun. 5(1), 015002 (2021).
    • 59. Moon H, Kumar D, Kim H et al. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9(3), 2711–2719 (2015).
    • 60. Guo H, Yi S, Feng K et al. In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chem. Eng. J. 403, doi: 10.1016/j.cej.2020.126432 (2021).
    • 61. Lv Q, Gao M-Y, Cheng Z-H et al. Rational synthesis of hollow cubic CuS@Spiky Au core–shell nanoparticles for enhanced photothermal and SERS effects. Chem. Commun. 54(95), 13399–13402 (2018).
    • 62. Deng X, Liang S, Cai X et al. Yolk–shell structured Au nanostar@metal–organic framework for synergistic chemo-photothermal therapy in the second near-infrared window. Nano Lett. 19(10), 6772–6780 (2019).
    • 63. Chang Y, Cheng Y, Feng Y et al. Resonance energy transfer-promoted photothermal and photodynamic performance of gold–copper sulfide yolk–shell nanoparticles for chemophototherapy of cancer. Nano Lett. 18(2), 886–897 (2018). • Demonstrates the superior performance of the unique porous yolk–shell structure in chemotherapy, photothermal and photodynamic combination therapy of cancer under different irradiations.
    • 64. Lin L-S, Yang X, Zhou Z et al. Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic–plasmonic hybrid theranostic platform. Adv. Mater. 29(21), (2017). • Yolk–shell structured Fe3O4@Au is designed to promote the proximity of protons to the magnetic core exploiting an integrated magnetic-plasmonic hybrid theranostic platform.
    • 65. Ding X, Liow CH, Zhang M et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 136(44), 15684–15693 (2014).
    • 66. Schick I, Lorenz S, Gehrig D et al. Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging. J. Am. Chem. Soc. 136(6), 2473–2483 (2014).
    • 67. Ju Y, Zhang H, Yu J et al. Monodisperse Au–Fe2C Janus nanoparticles: an attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 11(9), 9239–9248 (2017). • Au-Fe2C Janus structure demonstrated as a multifunctional platform with triple-modal imaging-guided photothermal therapy effect for precise diagnosis and efficient tumor treatment.
    • 68. Feng Y, Wang Y, Song X et al. Depletion sphere: explaining the number of Ag islands on Au nanoparticles. Chem. Sci. 8(1), 430–436 (2017).
    • 69. Liu Y, Yang Z, Huang X et al. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano 12(8), 8129–8137 (2018). • The self-assembled exceedingly small magnetic iron oxide NPs on the surfaces of gold nanowreaths can be responsive to glutathione for releasing, turning on intensive T1 imaging capabilities.
    • 70. Du Y, Yang C, Li F et al. Core–shell–satellite nanomaces as remotely controlled self-fueling Fenton reagents for imaging-guided triple-negative breast cancer-specific therapy. Small 16(31), e2002537 (2020).
    • 71. Deng X, Li K, Cai X et al. A hollow-structured CuS@Cu2S@Au nanohybrid: synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics. Adv. Mater. 29(36), (2017). • Prepared a hollow CuS@Cu2S@Au core–satellite structure as multifunctional photothermal conversion agent and drug carrier.
    • 72. Hu M, Chen J, Li Z-Y et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084–1094 (2006).
    • 73. Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(6), 3888–3912 (2011).
    • 74. Meng X, Liu L, Ouyang S et al. Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28(32), 6781–6803 (2016).
    • 75. Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8(2), 95–103 (2014).
    • 76. Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015).
    • 77. Xia Y, Li W, Cobley CM et al. Gold nanocages: from synthesis to theranostic applications. Acc. Chem. Res. 44(10), 914–924 (2011).
    • 78. Kinnear C, Moore TL, Rodriguez-Lorenzo L et al. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem. Rev. 117(17), 11476–11521 (2017).
    • 79. Coughlan C, Ibáñez M, Dobrozhan O et al. Compound copper chalcogenide nanocrystals. Chem. Rev. 117(9), 5865–6109 (2017).
    • 80. Sharp CG, Leach ADP, Macdonald JE. Tolman's electronic parameter of the ligand predicts phase in the cation exchange to CuFeS2 nanoparticles. Nano Lett. 20(12), 8556–8562 (2020).
    • 81. Zhao Y, Pan H, Lou Y et al. Plasmonic Cu2-xs nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 131(12), 4253–4261 (2009).
    • 82. Agrawal A, Cho SH, Zandi O et al. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 118(6), 3121–3207 (2018).
    • 83. Cho K-H, Alcorn FM, Heo J, Jain PK. Plasmon resonances and structures of chalcogenide alloy nanocrystals. Chem. Mater. 34(11), 4992–4999 (2022).
    • 84. Luther JM, Jain PK, Ewers T, Alivisatos AP. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10(5), 361–366 (2011).
    • 85. Zhang X, Chen YL, Liu R-S, Tsai DP. Plasmonic photocatalysis. Rep. Prog. Phys. 76(4), (2013).
    • 86. Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17(11), 657–674 (2020).
    • 87. Kim M, Lee J-H, Nam J-M. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci. 6(17), (2019).
    • 88. Gai S, Yang G, Yang P et al. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today 19, 146–187 (2018).
    • 89. Zhu L, Gao M, Peh CKN, Ho GW. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horizons 5(3), 323–343 (2018).
    • 90. Song J, Yang X, Jacobson O et al. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 9(9), 9199–9209 (2015).
    • 91. Huang J, Guo M, Ke H et al. Rational design and synthesis of γFe2O3@Au magnetic gold nanoflowers for efficient cancer theranostics. Adv. Mater. 27(34), 5049–5056 (2015).
    • 92. Feng L, He F, Dai Y et al. A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy. ACS Appl. Mater. Interfaces 9(15), 12993–13008 (2017).
    • 93. Yang C, Chang M, Yuan M et al. NIR-triggered multi-mode antitumor therapy based on Bi2Se3/Au heterostructure with enhanced efficacy. Small 17(28), e2100961 (2021).
    • 94. Fan W, Yung B, Huang P, Chen X. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 117(22), 13566–13638 (2017).
    • 95. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 1(4), 279–293 (2004).
    • 96. Zhang C, Zhao K, Bu W et al. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem. Int. Ed. 54(6), 1770–1774 (2015).
    • 97. Yang Z, Wang J, Ai S et al. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics 9(23), 6809–6823 (2019).
    • 98. Lan M, Zhao S, Liu W et al. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater. 8(13), e1900132 (2019).
    • 99. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 115(4), 1990–2042 (2015).
    • 100. Hu X, Wang N, Guo X et al. A sub-nanostructural transformable nanozyme for tumor photocatalytic therapy. Nano-Micro Lett. 14(1), 101 (2022). • The atomic-level design and fabrication provide a platform to accurately modulate the catalytic activities of nanozymes via a light-mediated sub-nanostructural transformation.
    • 101. Wang N, Li P, Zhao J et al. An anisotropic photocatalytic agent elicits robust photoimmunotherapy through plasmonic catalysis-mediated tumor microenvironment modulation. Nano Today 50, doi: 10.1016/j.nantod.2023.101827 (2023). • Presents a promising plasmonic catalysis-mediated tumor microenviroment modulation strategy in phototherapy-based immuno-oncology.
    • 102. Zhang Y, Lv F, Cheng Y et al. Pd@Au bimetallic nanoplates decorated mesoporous MnO2 for synergistic nucleus-targeted NIR-II photothermal and hypoxia-relieved photodynamic therapy. Adv. Healthc. Mater. 9(2), e1901528 (2020).
    • 103. Li J, Luo Y, Pu K. Electromagnetic nanomedicines for combinational cancer immunotherapy. Angew. Chem. Int. Ed. 60(23), 12682–12705 (2021).
    • 104. Gan S, Tong X, Zhang Y et al. Covalent organic framework-supported molecularly dispersed near-infrared dyes boost immunogenic phototherapy against tumors. Adv. Funct. Mater. 29(46), (2019).
    • 105. Yang J, Hou M, Sun W et al. Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv. Sci. 7(16), (2020).
    • 106. Guo R, Wang S, Zhao L et al. Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 282, doi: 10.1016/j.biomaterials.2022.121425 (2022).
    • 107. Han L, Xia J-M, Hai X et al. Protein-stabilized gadolinium oxide-gold nanoclusters hybrid for multimodal imaging and drug delivery. ACS Appl. Mater. Interfaces 9(8), 6941–6949 (2017).
    • 108. Sharifi S, Behzadi S, Laurent S et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41(6), 2323–2343 (2012).
    • 109. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41(6), 2256–2282 (2012).
    • 110. Woźniak A, Malankowska A, Nowaczyk G et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 28(6), 92 (2017).
    • 111. Ding X, Li D, Jiang J. Gold-based inorganic nanohybrids for nanomedicine applications. Theranostics 10(18), 8061–8079 (2020).
    • 112. Zhang H, Ji Z, Xia T et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5), 4349–4368 (2012).
    • 113. Cheng Y, Zhang H, Qu X. Electronic band-engineered nanomaterials for biosafety and biomedical application. Acc. Mater. Res. 2(9), 764–779 (2021).
    • 114. Feng Y, Chang Y, Xu K et al. Safety-by-design of metal oxide nanoparticles based on the regulation of their energy edges. Small 16(21), e1907643 (2020).
    • 115. Shan B, Liu H, Li L et al. Near-infrared II plasmonic phototheranostics with glutathione depletion for multimodal imaging-guided hypoxia-tolerant chemodynamic-photocatalytic-photothermal cancer therapy triggered by a single laser. Small 18(4), e2105638 (2022).
    • 116. Shan B, Lu Y, Zheng C, Li M. Structural symmetry effects in plasmonic metal-semiconductor hybrid heterostructures for multimodal cancer phototheranostics. Chem. Eng. J. 444, doi: 10.1016/j.cej.2022.136707 (2022).
    • 117. He J, Hua S, Zhang D et al. SERS/NIR-II optical nanoprobes for multidimensional tumor imaging from living subjects, pathology, and single cells and guided NIR-II photothermal therapy. Adv. Funct. Mater. 32(46), (2022).
    • 118. Wang D, Wang H, Ji L et al. Hybrid plasmonic nanodumbbells engineering for multi-intensified second near-infrared light induced photodynamic therapy. ACS Nano 15(5), 8694–8705 (2021).
    • 119. Chang Y, Cheng Y, Zheng R et al. Plasmon-pyroelectric nanostructures used to produce a temperature-mediated reactive oxygen species for hypoxic tumor therapy. Nano Today 38, doi: 10.1016/j.nantod.2021.101110 (2021).
    • 120. Sun Z, Wang T, Wang J et al. Self-propelled Janus nanocatalytic robots guided by magnetic resonance imaging for enhanced tumor penetration and therapy. J. Am. Chem. Soc. 145(20), 11019–11032 (2023).
    • 121. Pan Y, Zhu Y, Xu C et al. Biomimetic yolk–shell nanocatalysts for activatable dual-modal-image-guided triple-augmented chemodynamic therapy of cancer. ACS Nano 16(11), 19038–19052 (2022).
    • 122. Zhang H, Hao C, Qu A et al. Heterostructures of MOFs and nanorods for multimodal imaging. Adv. Funct. Mater. 28(48), (2018).
    • 123. Li S, Zhang L, Chen X et al. Selective growth synthesis of ternary Janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR window. ACS Appl. Mater. Interfaces 10(28), 24137–24148 (2018).