We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanotechnology-enabled topical delivery of therapeutics in chronic rhinosinusitis

    Andy J Chua

    Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA

    Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA

    Department of Otorhinolaryngology – Head & Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore

    ,
    Valentina Di Francesco

    Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA

    ,
    Di Huang

    Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA

    Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA

    ,
    Anisha D’Souza

    Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA

    Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA

    ,
    Benjamin S Bleier

    Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA

    &
    Mansoor M Amiji

    *Author for correspondence: Tel.: +1 617 373 3137;

    E-mail Address: m.amiji@northeastern.edu

    Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA

    Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA

    Published Online:https://doi.org/10.2217/nnm-2023-0072

    Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the paranasal sinuses which represents a significant health burden due to its widespread prevalence and impact on patients’ quality of life. As the molecular pathways driving and sustaining inflammation in CRS become better elucidated, the diversity of treatment options is likely to widen significantly. Nanotechnology offers several tools to enhance the effectiveness of topical therapies, which has been limited by factors such as poor drug retention, mucosal permeation and adhesion, removal by epithelial efflux pumps and the inability to effectively penetrate biofilms. In this review, we highlight the successful application of nanomedicine in the field of CRS therapeutics, discuss current limitations and propose opportunities for future work.

    Plain language summary

    Chronic sinusitis is a common inflammatory condition of the sinuses, which affects patients’ quality of life and consumes significant healthcare resources. It is primarily treated with corticosteroids, a type of medication that reduces inflammation, as a nasal spray or taken orally. Nasal sprays are preferred, to minimize side effects elsewhere in the body. Recently, another class of drugs – ‘biologic agents’ – has been approved for a subtype of chronic sinusitis that causes polyps (grape-like swellings of the sinus lining). However, a lasting cure is elusive, because inflammation frequently returns once these medications are stopped. As our understanding of what causes chronic sinusitis improves, researchers are seeking therapies that more accurately target the cause of inflammation, rather than broadly suppressing all types of inflammation using corticosteroids. The use of nanotechnology allows the design of drugs to overcome various challenges in treating chronic sinusitis, potentially enabling more accurate delivery of drugs into the sinuses, improving drugs’ ability to remain on the sinus lining and penetrate it, reducing the amount of drug lost due to the action of outflow pumps and overcoming additional defenses built up by bacteria when they form thick films. Here, we describe how nanomedicine has been used to develop drugs for chronic sinusitis, discuss current limitations and propose opportunities for future work.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Orlandi RR, Kingdom TT, Smith TL et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int. Forum Allergy Rhinol. 11(3), 213–739 (2021). •• Comprehensive, evidence-based guidelines on chronic rhinosinusitis management.
    • 2. Fokkens WJ, Lund VJ Hopkins C et al. European Position Paper on rhinosinusitis and nasal polyps 2020. Rhinology 58(Suppl. 29), 1–464 (2020).
    • 3. Soler ZM, Wittenberg E, Schlosser RJ, Mace JC, Smith TL. Health state utility values in patients undergoing endoscopic sinus surgery. Laryngoscope 121(12), 2672–2678 (2011).
    • 4. Deconde AS, Soler ZM. Chronic rhinosinusitis: epidemiology and burden of disease. Am. J. Rhinol. Allergy 30(2), 134–139 (2016).
    • 5. Alt JA, Smith TL, Mace JC, Soler ZM. Sleep quality and disease severity in patients with chronic rhinosinusitis. Laryngoscope 123(10), 2364–2370 (2013).
    • 6. Soler ZM, Eckert MA, Storck K, Schlosser RJ. Cognitive function in chronic rhinosinusitis: a controlled clinical study. Int. Forum Allergy Rhinol. 5(11), 1010–1017 (2015).
    • 7. Stevens WW, Peters AT, Tan BK et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis. J. Allergy Clin. Immunol. Pract. 7(8), 2812–2820.e3 (2019).
    • 8. Cao PP, Wang ZC, Schleimer RP, Liu Z. Pathophysiologic mechanisms of chronic rhinosinusitis and their roles in emerging disease endotypes. Ann. Allergy Asthma Immunol. 122(1), 33–40 (2019).
    • 9. Mimmi S, Lombardo N, Maisano D et al. Spotlight on a short-time treatment with the IL-4/IL-13 receptor blocker in patients with CRSwNP: microRNAs modulations and preliminary clinical evidence. Genes (Basel) 13(12), 2366 (2022).
    • 10. Beule AG. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 9, doi: 10.3205/cto000071 (2010) (Online).
    • 11. Mueller SK. Exosomes and chronic rhinosinusitis. World J. Otorhinolaryngol. Head Neck Surg. 4(3), 175–178 (2018).
    • 12. Huang D, Taha MS, Nocera AL, Workman AD, Amiji MM, Bleier BS. Cold exposure impairs extracellular vesicle swarm-mediated nasal antiviral immunity. J. Allergy Clin. Immunol. 151(2), 509–525.e8 (2023).
    • 13. Jeong JH, Yoo HS, Lee SH, Kim KR, Yoon HJ, Kim SH. Nasal and exhaled nitric oxide in chronic rhinosinusitis with polyps. Am. J. Rhinol. Allergy 28(1), e11–16 (2014).
    • 14. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357(Pt 3), 593–615 (2001).
    • 15. Vickery TW, Ramakrishnan VR, Suh JD. The role of Staphylococcus aureus in patients with chronic sinusitis and nasal polyposis. Curr. Allergy Asthma Rep. 19(4), 21 (2019).
    • 16. Bendouah Z, Barbeau J, Hamad WA, Desrosiers M. Biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa is associated with an unfavorable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngol. Head Neck Surg. 134(6), 991–996 (2006).
    • 17. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16(5), 580–589 (2013).
    • 18. Nur Husna SM, Tan H-TT, Md Shukri N, Mohd Ashari NS, Wong KK. Nasal epithelial barrier integrity and tight junctions disruption in allergic rhinitis: overview and pathogenic insights. Front. Immunol. 12, 663626 (2021).
    • 19. Jiao J, Wang C, Zhang L. Epithelial physical barrier defects in chronic rhinosinusitis. Expert Rev. Clin. Immunol. 15(6), 679–688 (2019).
    • 20. Lam K, Schleimer R, Kern RC. The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr. Allergy Asthma Rep. 15(7), 41 (2015).
    • 21. Ferguson JL, McCaffrey TV, Kern EB, Martin WJ 2nd. The effects of sinus bacteria on human ciliated nasal epithelium in vitro. Otolaryngol. Head Neck Surg. 98(4), 299–304 (1988).
    • 22. Gudis D, Zhao KQ, Cohen NA. Acquired cilia dysfunction in chronic rhinosinusitis. Am. J. Rhinol. Allergy 26(1), 1–6 (2012).
    • 23. Kato A. Immunopathology of chronic rhinosinusitis. Allergol Int. 64(2), 121–130 (2015).
    • 24. Takabayashi T, Kato A, Peters AT et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am. J. Respir. Crit. Care Med. 187(1), 49–57 (2013).
    • 25. Shin JM, Yang HW, Park JH, Kim TH. Role of nasal fibroblasts in airway remodeling of chronic rhinosinusitis: the modulating functions reexamined. Int. J. Mol. Sci. 24(4), 4017 (2023).
    • 26. Chong LY, Piromchai P, Sharp S et al. Biologics for chronic rhinosinusitis. Cochrane Database Syst. Rev. 3(3), CD013513 (2021).
    • 27. Harvey RJ, Goddard JC, Wise SK, Schlosser RJ. Effects of endoscopic sinus surgery and delivery device on cadaver sinus irrigation. Otolaryngol. Head Neck Surg. 139(1), 137–142 (2008).
    • 28. Han JK, Kern RC. Topical therapies for management of chronic rhinosinusitis: steroid implants. Int. Forum Allergy Rhinol. 9(Suppl. 1), S22–S26 (2019). • Broad overview of sinus implants in clinical use.
    • 29. Han JK, Marple BF, Smith TL et al. Effect of steroid-releasing sinus implants on postoperative medical and surgical interventions: an efficacy meta-analysis. Int. Forum Allergy Rhinol. 2(4), 271–279 (2012).
    • 30. Kern RC, Stolovitzky JP, Silvers SL et al. A phase 3 trial of mometasone furoate sinus implants for chronic sinusitis with recurrent nasal polyps. Int. Forum Allergy Rhinol. 8(4), 471–481 (2018).
    • 31. Cervin A, Rimmer J, Wrobel A, Abelak Y, Brayton L, Kuang Y. Long-acting implantable corticosteroid matrix for chronic rhinosinusitis: results of LANTERN phase 2 randomized controlled study. Int. Forum Allergy Rhinol. 12(2), 147–159 (2022).
    • 32. Efficacy and safety of LYR-210 for the treatment of chronic rhinosinusitis in adults (ENLIGHTEN 2). https://ClinicalTrials.gov/show/NCT05295459
    • 33. LYR-220 for adult subjects with chronic rhinosinusitis (BEACON study). https://ClinicalTrials.gov/show/NCT05035654
    • 34. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015).
    • 35. Zhang H, Hu L, Li W, Lai Y, Zhou J, Wang D. The postoperative outcomes of patients with chronic rhinosinusitis with nasal polyps by sustained released steroid from hyaluronic acid gel. Eur. Arch. Otorhinolaryngol. 278, 1047–1052 (2021).
    • 36. Vediappan RS, Bennett C, Cooksley C et al. Wound healing in endoscopic sinus surgery: phase 1 clinical trial evaluating the role of Chitogel with adjuvants. Clin. Otolaryngol. 48(2), 158–166 (2023).
    • 37. Ji Y-R, Hsu Y-H, Syue M-H et al. Controlled decomposable hydrogel triggered with a specific enzyme. ACS Omega 7(4), 3254–3261 (2022).
    • 38. Far J, Abdel-Haq M, Gruber M, Abu Ammar A. Developing biodegradable nanoparticles loaded with mometasone furoate for potential nasal drug delivery. ACS Omega 5(13), 7432–7439 (2020).
    • 39. Garakani SS, Davachi SM, Bagher Z et al. Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications. Int. J. Biol. Macromol. 164, 356–370 (2020).
    • 40. Su Y, Sun B, Gao X, Liu S, Hao R, Han B. Chitosan hydrogel doped with PEG–PLA nanoparticles for the local delivery of miRNA-146a to treat allergic rhinitis. Pharmaceutics 12(10), 907 (2020).
    • 41. Rimmer J, Cervin A, Wrobel A et al. Impact of long-acting implantable LYR-210 corticosteroid matrices on quality of life of patients with chronic rhinosinusitis in the LANTERN study. Int. Forum Allergy Rhinol. 13(9), 1821–1824 (2023).
    • 42. Lai SK, Suk JS, Pace A et al. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials 32(26), 6285–6290 (2011).
    • 43. Huckaby JT, Lai SK. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. 124, 125–139 (2018). • Comprehensive review on PEGylation as a strategy for drug delivery in the nose.
    • 44. Khutoryanskiy VV. Beyond PEGylation: alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv. Drug Deliv. Rev. 124, 140–149 (2018).
    • 45. Ways TMM, Filippov SK, Maji S et al. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: synthesis, structural characterisation and diffusion studies. J. Colloid Interface Sci. 626, 251–264 (2022).
    • 46. Köllner S, Dünnhaupt S, Waldner C, Hauptstein S, De Sousa IP, Bernkop-Schnürch A. Mucus permeating thiomer nanoparticles. Eur. J. Pharm. Biopharm. 97, 265–272 (2015).
    • 47. Tharakan A, Dobzanski A, London NR Jr et al. Characterization of a novel, papain-inducible murine model of eosinophilic rhinosinusitis. Int. Forum Allergy Rhinol. 8(4), 513–521 (2018).
    • 48. Netsomboon K, Bernkop-Schnürch A. Mucoadhesive vs mucopenetrating particulate drug delivery. Eur. J. Pharm. Biopharm. 98, 76–89 (2016). • Good review of mucoadhesion and mucopenetration strategies.
    • 49. Teng Z, Meng L-Y, Yang J-K, He Z, Chen X-G, Liu Y. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity. J. Control. Rel. 351, 456–475 (2022).
    • 50. Sun M, Qin D, Fan P, Chen X, Liu Y. Chitosan-centered nanosystems as sustained therapeutics for allergic rhinitis intervention: inhibition of histamine-induced cascades. J. Control. Rel. 335, 422–436 (2021).
    • 51. Clementino AR, Pellegrini G, Banella S et al. Structure and fate of nanoparticles designed for the nasal delivery of poorly soluble drugs. Mol. Pharm. 18(8), 3132–3146 (2021).
    • 52. Gao X, Xiong Y, Chen H et al. Mucus adhesion vs mucus penetration? Screening nanomaterials for nasal inhalation by MD simulation. J. Control. Rel. 353, 366–379 (2023).
    • 53. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61(2), 158–171 (2009).
    • 54. Levin ER, Hammes SR. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat. Rev. Mol. Cell Biol. 17(12), 783–797 (2016).
    • 55. Bleier BS. Regional expression of epithelial MDR1/P-glycoprotein in chronic rhinosinusitis with and without nasal polyposis. Int. Forum Allergy Rhinol. 2(2), 122–125 (2012).
    • 56. Bleier BS, Nocera AL, Iqbal H et al. P-glycoprotein promotes epithelial T helper 2-associated cytokine secretion in chronic sinusitis with nasal polyps. Int. Forum Allergy Rhinol. 4(6), 488–494 (2014).
    • 57. Kocharyan A, Feldman R, Singleton A, Han X, Bleier BS. P-glycoprotein inhibition promotes prednisone retention in human sinonasal polyp explants. Int. Forum Allergy Rhinol. 4(9), 734–738 (2014). • Investigated p-glycoprotein inhibition using verapamil to increase the effective concentration of corticosteroids.
    • 58. Liu W, Lo YL, Hsu C et al. CS-PEI/Beclin-siRNA downregulate multidrug resistance proteins and increase paclitaxel therapeutic efficacy against NSCLC. Mol. Ther. Nucleic Acids 17, 477–490 (2019).
    • 59. Zheng M, Jiang T, Yang W et al. The siRNAsome: a cation-free and versatile nanostructure for siRNA and drug codelivery. Angew. Chem. Int. Ed. Engl. 58(15), 4938–4942 (2019).
    • 60. Taha MS, Nocera A, Workman A, Amiji MM, Bleier BS. P-glycoprotein inhibition with verapamil overcomes mometasone resistance in chronic sinusitis with nasal polyps. Rhinology 59(2), 205–211 (2021).
    • 61. Miyake MM, Nocera A, Levesque P et al. Double-blind placebo-controlled randomized clinical trial of verapamil for chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 140(1), 271–273 (2017).
    • 62. Workman AD, Mueller SK, McDonnell K, Goldfarb JW, Bleier BS. Phase I safety and tolerability study of topical verapamil HCl in chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 12(8), 1071–1074 (2022).
    • 63. Taha MS, Kutlehria S, D’Souza A, Bleier BS, Amiji MM. Topical administration of verapamil in poly(ethylene glycol)-modified liposomes for enhanced sinonasal tissue residence in chronic rhinosinusitis: ex vivo and in vivo evaluations. Mol. Pharm. 20(3), 1729–1736 (2023).
    • 64. Nocera AL, Mueller SK, Workman AD et al. Cystatin SN is a potent upstream initiator of epithelial-derived type 2 inflammation in chronic rhinosinusitis. J. Allergy Clin. Immunol. 150(4), 872–881 (2022).
    • 65. Psaltis AJ, Weitzel EK, Ha KR et al. The effect of bacterial biofilms on post-sinus surgical outcomes. Am. J. Rhinol. 22(1), 1–6 (2008).
    • 66. Zhang Z, Kofonow JM, Finkelman BS et al. Clinical factors associated with bacterial biofilm formation in chronic rhinosinusitis. Otolaryngol. Head Neck Surg. 144(3), 457–462 (2011).
    • 67. Hoyle BD, Costerton JW. Bacterial resistance to antibiotics: the role of biofilms. Prog. Drug Res. 37, 91–105 (1991).
    • 68. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 284(5418), 1318–1322 (1999).
    • 69. Lewis K. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322, 107–131 (2008).
    • 70. Cohen M, Kofonow J, Nayak JV et al. Biofilms in chronic rhinosinusitis: a review. Am. J. Rhinol. Allergy 23(3), 255–260 (2009). • Thorough review of the role of biofilms in chronic rhinosinusitis.
    • 71. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 13(1), 34–40 (2005).
    • 72. Desrosiers M, Myntti M, James G. Methods for removing bacterial biofilms: in vitro study using clinical chronic rhinosinusitis specimens. Am. J. Rhinol. 21(5), 527–532 (2007).
    • 73. Rosen PL, Palmer JN, O’Malley BW Jr, Cohen NA. Surfactants in the management of rhinopathologies. Am. J. Rhinol. Allergy 27(3), 177–180 (2013).
    • 74. Chiu AG, Palmer JN, Woodworth BA et al. Baby shampoo nasal irrigations for the symptomatic post-functional endoscopic sinus surgery patient. Am. J. Rhinol. 22(1), 34–37 (2008).
    • 75. Farag AA, Deal AM, McKinney KA et al. Single-blind randomized controlled trial of surfactant vs hypertonic saline irrigation following endoscopic endonasal surgery. Int. Forum Allergy Rhinol. 3(4), 276–280 (2013).
    • 76. Kofonow JM, Adappa ND. In vitro antimicrobial activity of SinuSurf™. ORL J. Otorhinolaryngol. Relat. Spec. 74(4), 179–184 (2012).
    • 77. Rudmik L, Hoy M, Schlosser RJ et al. Topical therapies in the management of chronic rhinosinusitis: an evidence-based review with recommendations. Int. Forum Allergy Rhinol. 3(4), 281–298 (2013).
    • 78. Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric oxide-releasing macromolecular scaffolds for antibacterial applications. Adv. Healthc. Mater. 7(13), e1800155 (2018).
    • 79. Jardeleza C, Rao S, Thierry B et al. Liposome-encapsulated ISMN: a novel nitric oxide-based therapeutic agent against Staphylococcus aureus biofilms. PLOS ONE 9(3), e92117 (2014).
    • 80. Zhang Y, Zhao Y, Dong D et al. Effects of isosorbide mononitrate loaded nanoparticles conjugated with anti-Staphylococcus aureus α-toxin on Staphylococcus aureus biofilms. Exp. Ther. Med. 19(2), 1267–1274 (2020).
    • 81. Huang S, Ding P, Liu S et al. ISMN-loaded PLGA–PEG nanoparticles conjugated with anti-Staphylococcus aureus α-toxin inhibit Staphylococcus aureus biofilms in chronic rhinosinusitis. Future Med. Chem. 13(23), 2033–2046 (2021).
    • 82. Goggin R, Jardeleza C, Wormald PJ, Vreugde S. Colloidal silver: a novel treatment for Staphylococcus aureus biofilms? Int. Forum Allergy Rhinol. 4(3), 171–175 (2014).
    • 83. Richter K, Facal P, Thomas N et al. Taking the silver bullet colloidal silver particles for the topical treatment of biofilm-related infections. ACS Appl. Mater. Interfaces 9(26), 21631–21638 (2017).
    • 84. Rajiv S, Drilling A, Bassiouni A, James C, Vreugde S, Wormald PJ. Topical colloidal silver as an anti-biofilm agent in a Staphylococcus aureus chronic rhinosinusitis sheep model. Int. Forum Allergy Rhinol. 5(4), 283–288 (2015).
    • 85. Scott JR, Krishnan R, Rotenberg BW, Sowerby LJ. The effectiveness of topical colloidal silver in recalcitrant chronic rhinosinusitis: a randomized crossover control trial. J. Otolaryngol. Head Neck Surg. 46(1), 64 (2017).
    • 86. Ooi ML, Richter K, Bennett C et al. Topical colloidal silver for the treatment of recalcitrant chronic rhinosinusitis. Front. Microbiol. 9, 720 (2018).
    • 87. Hadrup N, Lam HR. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review. Regul. Toxicol. Pharmacol. 68(1), 1–7 (2014).
    • 88. FDA. Over-the-counter drug products containing colloidal silver ingredients or silver salts. Department of Health and Human Services (HHS), Public Health Service (PHS), Food and Drug Administration (FDA). Final rule. Fed. Regist. 64(158), 44653–44658 (1999).
    • 89. Kilty SJ, Duval M, Chan FT, Ferris W, Slinger R. Methylglyoxal: (active agent of manuka honey) in vitro activity against bacterial biofilms. Int. Forum Allergy Rhinol. 1(5), 348–350 (2011).
    • 90. Jervis-Bardy J, Foreman A, Bray S, Tan L, Wormald PJ. Methylglyoxal-infused honey mimics the anti-Staphylococcus aureus biofilm activity of manuka honey: potential implication in chronic rhinosinusitis. Laryngoscope 121(5), 1104–1107 (2011).
    • 91. Paramasivan S, Drilling AJ, Jardeleza C, Jervis-Bardy J, Vreugde S, Wormald PJ. Methylglyoxal-augmented manuka honey as a topical anti-Staphylococcus aureus biofilm agent: safety and efficacy in an in vivo model. Int. Forum Allergy Rhinol. 4(3), 187–195 (2014).
    • 92. Manji J, Thamboo A, Sunkaraneni V et al. The association of Leptospermum honey with cytokine expression in the sinonasal epithelium of chronic rhinosinusitis patients. World J. Otorhinolaryngol. Head Neck Surg. 5(1), 19–25 (2019).
    • 93. Ooi ML, Jothin A, Bennett C et al. Manuka honey sinus irrigations in recalcitrant chronic rhinosinusitis: phase 1 randomized, single-blinded, placebo-controlled trial. Int. Forum Allergy Rhinol. 9(12), 1470–1477 (2019).
    • 94. Thamboo A, Thamboo A, Philpott C, Javer A, Clark A. Single-blind study of manuka honey in allergic fungal rhinosinusitis. J. Otolaryngol. Head Neck Surg. 40(3), 238–243 (2011).
    • 95. Lee VS, Humphreys IM, Purcell PL, Davis GE. Manuka honey sinus irrigation for the treatment of chronic rhinosinusitis: a randomized controlled trial. Int. Forum Allergy Rhinol. 7(4), 365–372 (2017).
    • 96. Yang C, Mavelli GV, Nacharaju P et al. Novel nitric oxide-generating platform using manuka honey as an anti-biofilm strategy in chronic rhinosinusitis. Int. Forum Allergy Rhinol. 10(2), 223–232 (2020).
    • 97. Huang TW, Cheng PW, Chan YH, Yeh TH, Young YH, Young TH. Regulation of ciliary differentiation of human respiratory epithelial cells by the receptor for hyaluronan-mediated motility on hyaluronan-based biomaterials. Biomaterials 31(26), 6701–6709 (2010).
    • 98. Hwang PH, Chan JM. Retinoic acid improves ciliogenesis after surgery of the maxillary sinus in rabbits. Laryngoscope 116(7), 1080–1085 (2006).
    • 99. Erickson VR, Antunes M, Chen B, Cohen NA, Hwang PH. The effects of retinoic acid on ciliary function of regenerated sinus mucosa. Am. J. Rhinol. 22(3), 334–336 (2008).
    • 100. Fang KM, Wang CT, Chen YW, Huang TW. Reduction of adhesions and antrostomy stenosis with topical vitamin A after endoscopic sinus surgery. Am. J. Rhinol. Allergy 29(6), 430–434 (2015).
    • 101. Antonio MA, Marson FAL, Toro MDC et al. Topical tretinoin in chronic rhinosinusitis with nasal polyps: a randomized clinical trial. Int. Forum Allergy Rhinol. 11(8), 1187–1196 (2021).
    • 102. Schilling AL, Carcella AR, Moore J et al. Compatibility of a thermoresponsive and controlled release system for promoting sinonasal cilia regeneration. Macromol. Biosci. 21(11), e2100277 (2021).
    • 103. Huang TW, Chan YH, Su HW, Chou YS, Young TH. Increased mucociliary differentiation and aquaporins formation of respiratory epithelial cells on retinoic acid-loaded hyaluronan-derivative membranes. Acta Biomater. 9(6), 6783–6789 (2013).
    • 104. Brown CL, Graham SM, Cable BB, Ozer EA, Taft PJ, Zabner J. Xylitol enhances bacterial killing in the rabbit maxillary sinus. Laryngoscope 114(11), 2021–2024 (2004).
    • 105. Jain R, Lee T, Hardcastle T, Biswas K, Radcliff F, Douglas R. The in vitro effect of xylitol on chronic rhinosinusitis biofilms. Rhinology 54(4), 323–328 (2016).
    • 106. Weissman JD, Fernandez F, Hwang PH. Xylitol nasal irrigation in the management of chronic rhinosinusitis: a pilot study. Laryngoscope 121(11), 2468–2472 (2011).
    • 107. Lin L, Tang X, Wei J, Dai F, Sun G. Xylitol nasal irrigation in the treatment of chronic rhinosinusitis. Am. J. Otolaryngol. 38(4), 383–389 (2017).
    • 108. Shin HW. Animal models in CRS and pathophysiologic insights gained: a systematic review. Laryngoscope Investig. Otolaryngol. 1(5), 116–123 (2016).
    • 109. Mastalerz L, Tyrak KE. Biomarkers for predicting response to long-term high dose aspirin therapy in aspirin-exacerbated respiratory disease. Clin. Transl. Allergy 11(6), e12048 (2021).
    • 110. Adappa ND, Zhang Z, Palmer JN et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int. Forum Allergy Rhinol. 4(1), 3–7 (2014).