We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Design of carbon dots for bioimaging and behavior regulation of stem cells

    Jing Li‡

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Rongshuang Tan‡

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Xueru Bian‡

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Zhangjie Ge

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    ,
    Jiamin Li

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    ,
    Zhihui Li

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    ,
    Lingzi Liao

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    ,
    Ling Yang

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    ,
    Rui Zhang

    *Author for correspondence:

    E-mail Address: zhangrui@lzu.edu.cn

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    &
    Ping Zhou

    **Author for correspondence:

    E-mail Address: zhoup@lzu.edu.cn

    Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730000, People's Republic of China

    Published Online:https://doi.org/10.2217/nnm-2023-0005

    Carbon dots (CDs) have been widely used in bioimaging, biosensing and biotherapy because of their good biocompatibility, optical properties and stability. In this review, we comprehensively summarize the research on CDs in terms of synthesis methods, optical properties and biotoxicity. We describe and envisage the directions for CDs application in stem cell imaging and differentiation, with the aim of stimulating the design of future related CDs. We used ‘carbon dots’, ‘stem cells’, ‘cell imaging’, ‘cell differentiation’ and ‘fate control’ as keywords to search for important articles. The Web of Science database was used to extract vital information from a total of 357 papers, 126 review articles and 231 article proceedings within 12 years (2011–2022).

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Li WD, Liu Y, Wu M et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 30(31), e1800676 (2018).
    • 2. Long P, Feng YY, Cao C et al. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 28(37), 1870263 (2018).
    • 3. Jiang K, Wang Y, Cai C, Lin H. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 30(26), e1800783 (2018).
    • 4. Liu JJ, Li R, Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 6(12), 2179–2195 (2020).
    • 5. Xu X, Ray R, Gu Y et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004).
    • 6. Kumar VB, Sher I, Rencus-Lazar S, Rotenstreich Y, Gazit E. Functional carbon quantum dots for ocular imaging and therapeutic applications. Small 19(7), e2205754 (2023).
    • 7. Dubey N, Dhiman S, Koner AL. Review of carbon dot-based drug conjugates for cancer therapy. ACS Appl. Nano Mater. 6(6), 4078–4096 (2023).
    • 8. Liu Q, Guo B, Rao Z, Zhang B, Gong JR. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 13(6), 2436–2441 (2013).
    • 9. Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH. Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31(1), 1–7 (2013).
    • 10. Chen G, Zhang Y, Li C, Huang D, Wang Q, Wang Q. Recent advances in tracking the transplanted stem cells using near-infrared fluorescent nanoprobes: turning from the first to the second near-infrared window. Adv. Healthcare Mater. 7(20), e1800497 (2018).
    • 11. Majood M, Garg P, Chaurasia R, Agarwal A, Mohanty S, Mukherjee M. Carbon quantum dots for stem cell imaging and deciding the fate of stem cell differentiation. ACS Omega 7(33), 28685–28693 (2022).
    • 12. Laird NZ, Acri TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: current progress and future directions. Adv. Drug Delivery Rev. 174, 613–627 (2021). • A recent review on the biomedical application of carbon dots (CDs).
    • 13. Su W, Wu H, Xu H et al. Carbon dots: a booming material for biomedical applications. Mater. Chem. Front. 4(3), 821–836 (2020).
    • 14. Zhou N, Hao Z, Zhao X et al. A novel fluorescent retrograde neural tracer: cholera toxin B conjugated carbon dots. Nanoscale 7(38), 15635–15642 (2015).
    • 15. Bacskai T, Veress G, Halasi G, Matesz C. Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta. Brain Res. 1313, 89–96 (2010).
    • 16. Singh I, Arora R, Dhiman H, Pahwa R. Carbon quantum dots: synthesis, characterization and biomedical applications. Turk. J. Pharm. Sci. 15(2), 219–230 (2018).
    • 17. Huang CX, Dong H, Su Y, Wu Y, Narron R, Yong Q. Synthesis of carbon quantum dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials (Basel) 9(3), 387 (2019).
    • 18. Singh A, Qu Z, Sharma A et al. Ultra-bright green carbon dots with excitation-independent fluorescence for bioimaging. J. Nanostruct. Chem. 13(3), 377–387 (2023).
    • 19. Wu H, Xu H, Shi Y et al. Recent advance in carbon dots: from properties to applications. Chin. J. Chem. 39(5), 1364–1388 (2021).
    • 20. Liu JH, Cao L, Lecroy GE et al. Carbon ‘quantum’ dots for fluorescence labeling of cells. ACS Appl. Mater. Interfaces 7(34), 19439–19445 (2015).
    • 21. Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 5(33), 6701–6727 (2017).
    • 22. Karnoub AE, Dash AB, Vo AP et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162), 557–563 (2007).
    • 23. Liang C, Wang C, Liu Z. Stem cell labeling and tracking with nanoparticles. Part. Part. Syst. Charact. 30(12), 1006–1017 (2013).
    • 24. Du J, Xu N, Fan J, Sun W, Peng X. Carbon dots for in vivo bioimaging and theranostics. Small 15(32), 1805087 (2019).
    • 25. Abdal Dayem A, Lee S, Cho S-G. The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials 8(10), 761 (2018).
    • 26. Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y et al. Carbon dots: applications in bioimaging and theranostics. Int. J. Pharm. 564, 308–317 (2019).
    • 27. Jorns M, Pappas D. A review of fluorescent carbon dots, their synthesis, physical and chemical characteristics, and applications. Nanomaterials 11(6), 1448 (2021).
    • 28. Kottam N, Smrithi SP. Luminescent carbon nanodots: current prospects on synthesis, properties and sensing applications. Methods Appl. Fluoresc. 9(1), 012001 (2021).
    • 29. Kaur N, Sharma V, Tiwari P, Saini AK, Mobin SM. Vigna radiata’ based green C-dots: photo-triggered theranostics, fluorescent sensor for extracellular and intracellular iron (III) and multicolor live cell imaging probe. Sens. Actuators B Chem. 291, 275–286 (2019).
    • 30. Ehtesabi H, Hallaji Z, Najafi Nobar S, Bagheri Z. Carbon dots with pH-responsive fluorescence: a review on synthesis and cell biological applications. Microchim. Acta 187(2), 150 (2020).
    • 31. Wang Y, Zhu Y, Yu S, Jiang C. Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv. 7(65), 40973–40989 (2017).
    • 32. Zuo P, Lu X, Sun Z, Guo Y, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim. Acta 183(2), 519–542 (2015).
    • 33. Vinoth Kumar J, Kavitha G, Arulmozhi R, Arul V, Singaravadivel S, Abirami N. Green sources derived carbon dots for multifaceted applications. J. Fluoresc. 31(4), 915–932 (2021).
    • 34. Vibhute A, Patil T, Gambhir R, Tiwari AP. Fluorescent carbon quantum dots: synthesis methods, functionalization and biomedical applications. Appl. Surf. Sci. 11, 100311 (2022).
    • 35. Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: a review. Biomed. Pharmacother. 132, 110834 (2020).
    • 36. Prasad Malavika J, Shobana C, Sundarraj S, Ganeshbabu M, Kumar P, Kalai Selvan R. Green synthesis of multifunctional carbon quantum dots: an approach in cancer theranostics. Biomater. Adv. 136, doi: 10.1016/j.bioadv.2022.212756 (.2022) (Online).
    • 37. Ding H, Li XH, Chen XB, Wei JS, Li XB, Xiong HM. Surface states of carbon dots and their influences on luminescence. J. Appl. Phys. 127(23), 231101 (2020).
    • 38. Ding H, Yu SB, Wei JS, Xiong HM. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10(1), 484–491 (2016).
    • 39. Bao L, Liu C, Zhang Z-L, Pang D-W. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv. Mater. 27(10), 1663–1667 (2015).
    • 40. Sarkar S, Banerjee D, Ghorai UK, Das NS, Chattopadhyay KK. Size dependent photoluminescence property of hydrothermally synthesized crystalline carbon quantum dots. J. Lumin. 178, 314–323 (2016).
    • 41. Peng J, Gao W, Gupta BK et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 12(2), 844–849 (2012). • A recent review on the application of CDs for bioimaging.
    • 42. Miao X, Qu D, Yang D et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 30(1), 1704740 (2018).
    • 43. Issa MA, Abidin ZZ, Pudza MY, Zentou H. Efficient removal of Cu(II) from aqueous systems using enhanced quantum yield nitrogen-doped carbon nanodots. RSC Adv. 10(25), 14979–14990 (2020).
    • 44. Li H, Yan X, Kong D et al. Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons 5(2), 218–234 (2020).
    • 45. Kasibabu B, D'souza S, Jha S, Kailasa SK. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from Carica papaya juice. J. Fluoresc. 25(4), 803–810 (2015).
    • 46. Pan L, Sun S, Zhang A et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 27(47), 7782–7787 (2015).
    • 47. Liu J, Li D, Zhang K, Yang M, Sun H, Yang B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for c imaging. Small 14(15), e1703919 (2018).
    • 48. Vedamalai M, Periasamy AP, Wang CW et al. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu(2+) ions in cells. Nanoscale 6(21), 13119–13125 (2014).
    • 49. Smrithi SP, Kottam N, Muktha H et al. Carbon dots derived from Beta vulgaris: evaluation of its potential as antioxidant and anticancer agent. Nanotechnology 33(4), 045403 (2021).
    • 50. Sun Y, Zhang M, Bhandari B, Yang C. Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods. Food Rev. Int. 38(7), 1513–1532 (2020).
    • 51. Wang C, Hu T, Wen Z et al. Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging. J. Colloid Interface Sci. 521, 33–41 (2018).
    • 52. Jia X, Li J, Wang E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4(18), 5572–5575 (2012).
    • 53. Cao L, Wang X, Meziani MJ et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007).
    • 54. Li D, Han D, Qu SN et al. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci. Appl. 5(7), e16120 (2016).
    • 55. Wang Q, Ma X, Liao H et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 14(2), 2053–2062 (2020).
    • 56. Tao H, Yang K, Ma Z et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2), 281–290 (2012).
    • 57. Ding H, Wei JS, Zhong N, Gao QY, Xiong HM. Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging. Langmuir 33(44), 12635–12642 (2017).
    • 58. Li H, He X, Kang Z et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. Engl. 49(26), 4430–4434 (2010).
    • 59. Muktha H, Sharath R, Kottam N, Smrithi SP, Samrat K, Ankitha P. Green synthesis of carbon dots and evaluation of its pharmacological activities. BioNanoScience 10(3), 731–744 (2020).
    • 60. Vibhute A, Nille O, Kolekar G et al. Fluorescent carbon quantum dots functionalized by poly L-lysine: efficient material for antibacterial, bioimaging and antiangiogenesis applications. J. Fluoresc. 32(5), 1789–1800 (2022). •• A critical article on the application of CDs in stem cell osteogenic differentiation.
    • 61. Shao D, Lu M, Xu D et al. Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomater. Sci. 5(9), 1820–1827 (2017).
    • 62. Das A, Roy D, Mandal M, Jaiswal C, Ta M, Mandal PK. Carbon dot with pH independent near-unity photoluminescence quantum yield in an aqueous medium: electrostatics-induced forster resonance energy transfer at submicromolar concentration. J. Phys. Chem. Lett. 9(17), 5092–5099 (2018).
    • 63. Yan J, Hou S, Yu Y et al. The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids Surf. B 171, 241–249 (2018).
    • 64. Wang H, Liu S, Song Y, Zhu BW, Tan M. Universal existence of fluorescent carbon dots in beer and assessment of their potential toxicity. Nanotoxicology 13(2), 160–173 (2019).
    • 65. Liu YY, Yu NY, Fang WD et al. Photodegradation of carbon dots cause cytotoxicity. Nat. Commun. 12(1), 812 (2021).
    • 66. Guo XL, Ding ZY, Deng SM et al. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon 134, 519–530 (2018).
    • 67. Esfandiari N, Bagheri Z, Ehtesabi H, Fatahi Z, Tavana H, Latifi H. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon 5(12), e02940 (2019).
    • 68. Yang ST, Wang X, Wang H et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C Nanomater. Interfaces 113(42), 18110–18114 (2009).
    • 69. Wang K, Gao Z, Gao G et al. Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res. Lett. 8(1), 1–9 (2013).
    • 70. Yang Y, Ren X, Sun Z et al. Toxicity and cbio-distribution of carbon dots after single inhalation exposure in vivo. Chin. Chem. Lett. 29(6), 895–898 (2018).
    • 71. Cao X, Pan X, Couvillion SP et al. Fate, cytotoxicity and cellular metabolomic impact of ingested nanoscale carbon dots using simulated digestion and a triculture small intestinal epithelial model. NanoImpact 23, 100349 (2021).
    • 72. Athinarayanan J, Periasamy VS, Al-Harbi LN, Alshatwi AA. Phoenix dactylifera leaf-derived biocompatible carbon quantum dots: application in cell imaging. Biomass Convers. Biorefin. doi: 10.1007/s13399-021-02159-5 (2022) (Online).
    • 73. Zhang M, Bai L, Shang W. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 22(15), 7461 (2012).
    • 74. Chen H, Wang L, Fu H et al. Gadolinium functionalized carbon dots for fluorescence/magnetic resonance dual-modality imaging of mesenchymal stem cells. J. Mater. Chem. B 4(46), 7472–7480 (2016).
    • 75. Zhu S, Meng Q, Wang L et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. Engl. 52(14), 3953–3957 (2013).
    • 76. Chen J, Wang Q, Zhou J et al. Porphyra polysaccharide-derived carbon dots for non-viral co-delivery of different gene combinations and neuronal differentiation of ectodermal mesenchymal stem cells. Nanoscale 9(30), 10820–10831 (2017).
    • 77. Han J, Na K. Transfection of the TRAIL gene into human mesenchymal stem cells using biocompatible polyethyleneimine carbon dots for cancer gene therapy. J. Indust. Engineer. Chem. 80, 722–728 (2019).
    • 78. Jiang B, Liu C, Guo Y et al. Precursor structure-determined fluorescence labeling for mesenchymal stem cells among four polyethylenimine-based carbon quantum dots. Colloids Surf. B 213, 112411 (2022).
    • 79. Cai H, Ma J, Xu X, Chu H, Zhang D, Li J. Sulfonated glycosaminoglycan bioinspired carbon dots for effective cellular labelling and promotion of the differentiation of mesenchymal stem cells. J. Mater. Chem. B 8(26), 5655–5666 (2020).
    • 80. Liang Z, Zeng L, Cao X et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation. J. Mater. Chem. C. 2(45), 9760–9766 (2014).
    • 81. Shang W, Zhang X, Zhang M et al. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 6(11), 5799–5806 (2014).
    • 82. Guo R, Zhou S, Li Y, Li X, Fan L, Voelcker NH. Rhodamine-functionalized graphene quantum dots for detection of Fe3+ in cancer stem cells. ACS Appl. Mater. Interfaces 7(43), 23958–23966 (2015).
    • 83. Su W, Guo R, Yuan F et al. Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells. J. Phys. Chem. Lett. 11(4), 1357–1363 (2020).
    • 84. Lu Y, Li L, Li M et al. Zero-dimensional carbon dots enhance bone regeneration, osteosarcoma ablation, and clinical bacterial eradication. Bioconjug. Chem. 29(9), 2982–2993 (2018).
    • 85. Zhou J, Deng W, Wang Y et al. Cationic carbon quantum dots derived from alginate for gene delivery: one-step synthesis and cellular uptake. Acta Biomater. 42, 209–219 (2016).
    • 86. Albanese A, Tang PS, Chan WC. The effect of nanoparticlesize, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).
    • 87. Havrdova M, Hola K, Skopalik J et al. Toxicity of carbon dots – effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99, 238–248 (2016).
    • 88. Zhou P, Qin L, Ge Z et al. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: a review. J. Biomed. Mater. Res. B Appl. Biomater. 110(8), 1968–1990 (2022).
    • 89. Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano C 6(5), 446–465 (2011). •• A interesting study of CDs entering the nucleus of cancer stem cell.
    • 90. Higuchi Y, Wu C, Chang KL et al. Polyamidoamine dendrimer-conjugated quantum dots for efficient labeling of primary cultured mesenchymal stem cells. Biomaterials 32(28), 6676–6682 (2011).
    • 91. Hassan M, Gomes VG, Dehghani A, Ardekani SM. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 11(1), 1–41 (2017).
    • 92. Yan J, Hou S, Yu Y et al. The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids Surf. B 171, 241–249 (2018).
    • 93. Lei W, Mochalin VN, Liu D, Qin S, Gogotsi Y, Chen Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 6, 8849 (2015).
    • 94. Zou J, Wang W, Nie Y et al. Microscale roughness regulates laminin-5 secretion of bone marrow mesenchymal stem cells. Clin. Hemorheol. Microcirc. 73(1), 237–247 (2019).
    • 95. Luo PG, Sahu S, Yang ST et al. Carbon ‘quantum’ dots for optical bioimaging. J. Mater. Chem. B 1(16), 2116–2127 (2013).
    • 96. Cao L, Yang ST, Wang X et al. Competitive performance of carbon ‘quantum’ dots in optical bioimaging. Theranostics 2(3), 295–301 (2012).
    • 97. Schroeder T. Imaging stem-cell-driven regeneration in mammals. Nature 453(7193), 345–351 (2008).
    • 98. Zhang Y, Chen SE, Shao J et al. Combinatorial surface roughness effects on osteoclastogenesis and osteogenesis. ACS Appl. Mater. Interfaces 10(43), 36652–36663 (2018).
    • 99. Liu F, Liu T, Xu X et al. Design, synthesis, and biological evaluation of (68)Ga-DOTA-PA1 for lung cancer: a novel PET tracer for multiple somatostatin receptor imaging. Mol. Pharm. 15(2), 619–628 (2018).
    • 100. Li J, Lee WY, Wu T et al. Multifunctional quantum dot nanoparticles for effective differentiation and long-term tracking of human mesenchymal stem cells in vitro and in vivo. Adv. Healthcare Mater. 5(9), 1049–1057 (2016). •• Some research about the application of stem cell imaging in vivo.
    • 101. Malina T, Polakova K, Skopalik J et al. Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon 152, 434–443 (2019).
    • 102. Das P, Ganguly S, Maity PP et al. Converting waste Allium sativum peel to nitrogen and sulphur co-doped photoluminescence carbon dots for solar conversion, cell labeling, and photobleaching diligences: a path from discarded waste to value-added products. J. Photochem. Photobiol. B 197, 111545 (2019).
    • 103. Jiang B, Yang H, Guo Y et al. Developing electropositive citric acid–polyethylenimine carbon quantum dots with high biocompatibility and labeling performance for mesenchymal stem cells in vitro and in vivo. New J. Chem. 46(5), 2508–2517 (2022).
    • 104. Han Y, Zhang F, Zhang J et al. Bioactive carbon dots direct the osteogenic differentiation of human bone marrow mesenchymal stem cells. Colloids Surf. B 179, 1–8 (2019).
    • 105. Cai H, Ma J, Xu X, Chu H, Zhang D, Li J. Sulfonated glycosaminoglycan bioinspired carbon dots for effective cellular labelling and promotion of the differentiation of mesenchymal stem cells. J. Mater. Chem. B 8(26), 5655–5666 (2020).
    • 106. Qiu J, Li D, Mou X et al. Effects of graphene quantum dots on the self-renewal and differentiation of mesenchymal stem cells. Adv. Healthcare Mater. 5(6), 702–710 (2016).
    • 107. Geng H, Qiu J, Zhu H, Liu X. Achieving stem cell imaging andosteogenic differentiation by using nitrogen doped graphene quantum dots. J. Mater. Sci.: Mater. Med. 29(6), 1–85 (2018).
    • 108. Jin N, Jin N, Wang Z et al. Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2 alpha-ATF4 pathway. Biomater. Sci. 8(10), 2840–2852 (2020).
    • 109. Lu CW, Hung Y, Hsiao JK et al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 7(1), 149–154 (2007).
    • 110. Ren C, Hao X, Wang L et al. Metformin carbon dots for promoting periodontal bone regeneration via activation of ERK/AMPK pathway. Adv. Healthcare Mater. 10(12), e2100196 (2021). •• An interesting study on the surface charge and osteogenic behaviors of carbon points.
    • 111. Yang X, Zhao Q, Chen J et al. Graphene oxide quantum dots promote osteogenic differentiation of stem cells from human exfoliated deciduous teeth via the Wnt/beta-catenin signaling pathway. Stem Cells Int. 2021(1), 1–12 (2021).
    • 112. Xu D, Wang C, Wu J et al. Effects of low-concentration graphene oxide quantum dots on improving the proliferation and differentiation ability of bone marrow mesenchymal stem cells through the Wnt/beta-catenin signaling pathway. ACS Omega 7(16), 13546–13556 (2022).
    • 113. Geng B, Fang F, Li P et al. Surface charge-dependent osteogenic behaviors of edge-functionalized graphene quantum dots. Chem. Eng. J. 417, 128125 (2021).
    • 114. Bu WH, Xu XW, Wang ZL et al. Ascorbic acid-PEI carbon dots with osteogenic effects as miR-2861 carriers to effectively enhance bone regeneration. ACS Appl. Mater. Interfaces 12(45), 50287–50302 (2020).
    • 115. Meng Y, Yang M, Liu X, Yu W, Yang B. Zn2+-doped carbon dots, a good biocompatibility nanomaterial applied for bio-imaging and inducing osteoblastic differentiation in vitro. Nano 14(03), 1950029 (2019).
    • 116. Wang B, Yang M, Liu L et al. Osteogenic potential of Zn2+-passivated carbon dots for bone regeneration in vivo. Biomater. Sci. 7(12), 5414–5423 (2019).
    • 117. Li H, Xie H, Liu W et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 119(12), 3666–3677 (2009).
    • 118. Das B, Girigoswami A, Dutta A et al. Carbon nanodots doped caramagnetic iron oxide nanoparticles for multimodal bioimaging and osteochondral tissue regeneration via external magnetic actuation. ACS Biomater. Sci. & Eng. 5(7), 3549–3560 (2019).
    • 119. Shafiei S, Omidi M, Nasehi F et al. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: fabrication and characterization. Mater. Sci. Eng. C 100, 564–575 (2019).
    • 120. Nasrin A, Hassan M, Mirabet MM, Windhab N, Gomes VG. 3D-printed bioresorbable poly(lactic-co-glycolic acid) and quantum-dot nanocomposites: scaffolds for enhanced bone mineralization and inbuilt co-monitoring. J. Biomed. Mater. Res. Part A 110(4), 916–927 (2021).
    • 121. Samadian S, Karbalaei A, Pourmadadi M et al. A novel alginate-gelatin microcapsule to enhance bonedifferentiation of mesenchymal stem cells. Int. J. Polymeric Mater. Polymeric Biomater. 71(6), 395–402 (2021).
    • 122. Wang Z, Yang H, Bai Y et al. rBMSC osteogenic differentiation enhanced by graphene quantum dots loaded with immunomodulatory layered double hydroxide nanoparticles. Biomed. Mater. 17(2), 024101 (2022).
    • 123. Das B, Dadhich P, Pal P et al. Doping of carbon quantum dots (CDs) in calcium phosphate nanorods for inducing ectopic chondrogenesis via activation of the HIF-alpha/SOX-9 pathway. ACS Omega 4(1), 374–386 (2019).
    • 124. Gurgul SJ, Moreira A, Xiao Y et al. Electrosprayed particles loaded with kartogenin as a potential osteochondral repair implant. Polymers 15(5), 1275 (2023).
    • 125. Pierrat P, Wang R, Kereselidze D et al. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 51, 290–302 (2015).
    • 126. Wu YF, Wu HC, Kuan CH et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 6, doi: 10.1038/srep21170 (2016) (Online).
    • 127. Cao X, Wang J, Deng W et al. Photoluminescent cationic carbon dots as efficient non-viral delivery of plasmid SOX9 and chondrogenesis of fibroblasts. Sci. Rep. 8, 7057 (2018).
    • 128. Lu Z, Liu S, Le Y et al. An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials 218, 119190 (2019).
    • 129. Liu J, Jiang T, Li C et al. Bioconjugated carbon dots for delivery of siTnf alpha to enhance chondrogenesis of mesenchymal stem cells by suppression of inflammation. Stem Cells Transl. Med. 8(7), 724–736 (2019).
    • 130. Meng W, Rey-Rico A, Claudel M et al. rAAV-mediated overexpression of SOX9 and TGF-beta via carbon dot-guided vector delivery enhances the biological activities in human bone marrow-derived mesenchymal stromal cells. Nanomaterials 10(5), 855 (2020).
    • 131. Veliz EA, Kaplina A, Hettiarachchi SD et al. Chalcones as anti-glioblastoma stem cell agent alone or as nanoparticle formulation using carbon dots as nanocarrier. Pharmaceutics 14(7), 1465 (2022).
    • 132. Ku T, Hao F, Yang X et al. Graphene quantum dots disrupt embryonic stem cell differentiation by interfering with the methylation level of Sox2. Environ. Sci. Technol. 55(5), 3144–3155 (2021).
    • 133. Chahal S, Macairan J-R, Yousefi N, Tufenkji N, Naccache R. Green synthesis of carbon dots and their applications. RSC Adv. 11(41), 25354–25363 (2021).
    • 134. Hiew VV, Simat SFB, Teoh PL. The advancement of biomaterials in regulating stem cell fate. Stem Cell Rev. Rep. 7(14), 43–57 (2018).
    • 135. Malina T, Polakova K, Hirsch C, Svoboda L, Zboril R. Toxicity of carbon nanomaterials – towards reliable viability assessment via new approach in flow cytometry. Int. J. Mol. Sci. 22(14), 7750 (2021).
    • 136. Publication BS. ISO/TR 16197 - Nanotechnologies – guidance on toxicological screening methods for manufactured nanomaterials. ISO TC 229 - Nanotechnologies doi:ISO/TR 16197:2014(E) (2014).
    • 137. Liu W, Huang G, Su X et al. Zebrafish: a promising model for evaluating the toxicity of carbon dot-based nanomaterials. ACS Appl. Mater. Interfaces 12(43), 49012–49020 (2020).
    • 138. Jia HR, Zhu YX, Duan QY, Chen Z, Wu FG. Nanomaterials meet zebrafish: toxicity evaluation and drug delivery applications. J. Control. Rel. 311–312, 301–318 (2019).
    • 139. Hackenberg S, Scherzed A, Kessler M et al. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 201(1), 27–33 (2011).
    • 140. Garzon I, Perez-Kohler B, Garrido-Gomez J et al. Evaluation of the cell viability of human Wharton's jelly stem cells for use in cell therapy. Tissue Eng. Part C 18(6), 408–419 (2012).
    • 141. Bagheri Z, Ehtesabi H, Hallaji Z et al. On-chip analysis of carbon dots effect on yeast replicative lifespan. Anal. Chim. Acta 1033, 119–127 (2018).
    • 142. Scimeca JC, Verron E. Nano-engineered biomaterials: safety matters and toxicity evaluation. Mater. Today Adv. 15, 100260 (2022).
    • 143. Wang Y, Huo T, Jiang H et al. Sugar-originated carbon nanodots selectively damage the tumor and enhance the sensitivity of chemotherapy. Nano Today 38, doi: 10.1016/j.nantod.2021.101200 (2021) (Online).
    • 144. Ahmadian E, Janas D, Eftekhari A, Zare N. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. Chemosphere 302, doi: 10.1016/j.chemosphere.2022.134826 (2022) (Online).
    • 145. Eftekhari A, Kryschi C, Pamies D et al. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics 7(3), 236–257 (2023).
    • 146. Unnikrishnan B, Wu RS, Wei SC, Huang CC, Chang HT. Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega 5(20), 11248–11261 (2020).
    • 147. Liu JH, Li RS, Yuan B, Wang J, Li YF, Huang CZ. Mitochondria-targeting single-layered graphene quantum dots with dual recognition sites for ATP imaging in living cells. Nanoscale 10(36), 17402–17408 (2018).
    • 148. Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: respective featured applications and future prospects. Med. Nov. Technol. Devices 16, 172–187 (2022).
    • 149. Luo S, Wu J, Jia Z et al. An injectable, bifunctional hydrogel with photothermal effects for tumor therapy and bone regeneration. Macromol. Biosci. 19(9), e1900047 (2019).
    • 150. Shan H, Zhou X, Tian B et al. Gold nanorods modified by endogenous protein with light-irradiation enhance bone repair via multiple osteogenic signal pathways. Biomaterials 284, doi: 10.1016/j.biomaterials.2022.121482 (2022) (Online).
    • 151. Jung S, Harris N, Niyonshuti Ii et al. Photothermal response induced by nanocage-coated artificial extracellular matrix promotes neural stem cell differentiation. Nanomaterials (Basel) 11(5), 1216 (2021).
    • 152. Schneider C, Dungel P, Priglinger E, Danzer M, Schadl B, Nurnberger S. The impact of photobiomodulation on the chondrogenic potential of adipose-derived stromal/stem cells. J. Photochem. Photobiol. B. 221, doi: 10.1016/j.jphotobiol.2021.112243 (2021) (Online).
    • 153. Wang D, Zhang T, Wu B et al. Reversibly photoswitchable dual-color fluorescence and controlled release properties of polymeric nanoparticles. Macromolecules 52(18), 7130–7136 (2019).
    • 154. Jang Y, Kim TI, Kim H, Choi Y, Kim Y. Photoactivatable BODIPY platform: light-triggered anticancer drug release and fluorescence monitoring. ACS Appl. Bio Mater. 2(6), 2567–2572 (2019).
    • 155. Xue X, Fang T, Yin L et al. Multistage delivery of CDs-DOX/ICG-loaded liposome for highly penetration and effective chemo-photothermal combination therapy. Drug Deliv. 25(1), 1826–1839 (2018).
    • 156. Zhou L, Li Z, Liu Z, Ren J, Qu X. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging. Langmuir 29(21), 6396–6403 (2013).
    • 157. Zheng M, Liu S, Li J et al. Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv. Mater. 26(21), 3554–3560 (2014).
    • 158. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006).
    • 159. Ghanbari M, Salavati-Niasari M, Mohandes F. Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering. Int. J. Pharm. 602, 120660 (2021).
    • 160. Wan C, Hu M, Peng X et al. Novel multifunctional dexamethasone carbon dots synthesized using the one-pot green method for anti-inflammatory, osteogenesis, and osteoimmunomodulatory in bone regeneration. Biomater. Sci. 10(21), 6291–6306 (2022).
    • 161. Mas-Moruno C, Su B, Dalby MJ. Multifunctional coatings and nanotopographies: toward cell instructive and antibacterial implants. Adv. Healthcare Mater. 8(1), e1801103 (2019).