We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Nano–bio interactions of upconversion nanoparticles at subcellular level: biodistribution and cytotoxicity

    Karolina Zajdel

    *Author for correspondence:

    E-mail Address: kzajdel@imdik.pan.pl

    Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, 02106, Poland

    National Measurement Laboratory, LGC Limited, Teddington, TW11 0LY, United Kingdom

    Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, 02668, Poland

    ,
    Dorota Bartczak

    National Measurement Laboratory, LGC Limited, Teddington, TW11 0LY, United Kingdom

    ,
    Małgorzata Frontczak-Baniewicz

    Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, 02106, Poland

    ,
    David A Ramsay

    National Measurement Laboratory, LGC Limited, Teddington, TW11 0LY, United Kingdom

    ,
    Przemysław Kowalik

    Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, 02668, Poland

    ,
    Kamil Sobczak

    Laboratory of Microscopy & Electron Spectroscopy, Faculty of Chemistry, Biological & Chemical Research Centre, University of Warsaw, Warsaw, 02089, Poland

    ,
    Izabela Kamińska

    Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, 02668, Poland

    ,
    Tomasz Wojciechowski

    Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, 02668, Poland

    ,
    Roman Minikayev

    Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, 02668, Poland

    ,
    Heidi Goenaga-Infante

    National Measurement Laboratory, LGC Limited, Teddington, TW11 0LY, United Kingdom

    &
    Bożena Sikora

    **Author for correspondence:

    E-mail Address: sikorab@ifpan.edu.pl

    Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Warsaw, 02668, Poland

    Published Online:https://doi.org/10.2217/nnm-2022-0320

    Background: Modern medicine requires intensive research to find new diagnostic and therapeutic solutions. Recently, upconverting nanoparticles (UCNPs) doped with lanthanide ions have attracted significant attention. Methods: The efficient internalization of UCNPs by cells was confirmed, and their precise cellular localization was determined by electron microscopy and confocal studies. Results: UCNPs colocalized only with specific organelles, such as early endosomes, late endosomes and lysosomes. Furthermore, experiments with chemical inhibitors confirmed the involvement of endocytosis in UCNPs internalization and helped select several mechanisms involved in internalization. Exposure to selected UCNPs concentrations did not show significant cytotoxicity, induction of oxidative stress or ultrastructural changes in cells. Conclusion: This study suggests that UCNPs offer new diagnostic options for biomedical infrared imaging.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Dan DT. Nanotechnology, nanoparticles and nanoscience: a new approach in chemistry and life sciences. J. Nanosci. Lett. 10(2), 17 (2020).
    • 2. Nikalje AP. Nanotechnology and its applications in medicine. Med. Chem. 5(2), 81–89 (2015).
    • 3. Contera S, Bernardino de la Serna J, Tetley TD. Biotechnology, nanotechnology and medicine. Emerg. Top Life Sci. 4(6), 551–554 (2020).
    • 4. Scheinberg DA, Grimm J, Heller DA, Stater EP, Bradbury M, McDevitt MR. Advances in the clinical translation of nanotechnology. Curr. Opin. Biotechnol. 46, 66–73 (2017).
    • 5. Mariappan N. Recent trends in nanotechnology applications in surgical specialties and orthopedic surgery. Biomed. Pharmacol. J. 12(3), 1095–1127 (2019).
    • 6. Hofferberth SC, Grinstaff MW, Colson YL. Nanotechnology applications in thoracic surgery. Eur. J. Cardiothorac. Surg. 50(1), 6–16 (2016).
    • 7. Amin K, Moscalu R, Imere A et al. The future application of nanomedicine and biomimicry in plastic and reconstructive surgery. Nanomedicine 14(20), 2679–2696 (2019).
    • 8. Viswanathan VK, Manoharan SRR, Subramanian S, Moon A. Nanotechnology in spine surgery: a current update and critical review of the literature. World Neurosurg. 123, 142–155 (2019).
    • 9. Petersen DK, Naylor TM, Halen JPV. Current and future applications of nanotechnology in plastic and reconstructive surgery. Plast. Aesthet. Res. 1, 43–50 (2014).
    • 10. Chandarana M, Curtis A, Hoskins C. The use of nanotechnology in cardiovascular disease. Appl. Nanosci. 8(7), 1607–1619 (2018).
    • 11. Wang DK, Rahimi M, Filgueira CS. Nanotechnology applications for cardiovascular disease treatment: current and future perspectives. Nanomedicine 34, 102387 (2021).
    • 12. Passaro F, Testa G, Ambrosone L et al. Nanotechnology-based cardiac targeting and direct cardiac reprogramming: the betrothed. Stem Cells Int. 2017, 4940397 (2017).
    • 13. Flores AM, Ye J, Jarr KU et al. Nanoparticle therapy for vascular diseases. Arterioscler. Thromb. Vasc. Biol. 39(4), 635–646 (2019).
    • 14. Pala R, Anju VT, Dyavaiah M, Busi S, Nauli SM. Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int. J. Nanomed. 15, 3741–3769 (2020).
    • 15. Kumar V, Palazzolo S, Bayda S, Corona G, Toffoli G, Rizzolio F. DNA nanotechnology for cancer therapy. Theranostics 6(5), 710–725 (2016).
    • 16. Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J. Hematol. Oncol. 12(1), 1–13 (2019).
    • 17. El-Sayed A, Kamel M. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. Int. 27(16), 19200–19213 (2020).
    • 18. Jin C, Wang K, Oppong-Gyebi A, Hu J. Application of nanotechnology in cancer diagnosis and therapy – a mini-review. Int. J. Med. Sci. 17(18), 2964–2973 (2020).
    • 19. Li J, Yao M, Shao Y, Yao D. The application of bio-nanotechnology in tumor diagnosis and treatment: a view. Nanotechnol. Rev. 7(3), 257–266 (2018).
    • 20. Madhurantakam S, Babu KJ, Rayappan JBB, Krishnan UM. Nanotechnology-based electrochemical detection strategies for hypertension markers. Biosens. Bioelectron. 116, 67–80 (2018).
    • 21. Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J. Biol. Inorg. Chem. 23(8), 1185–1204 (2018). • Reports on the potential use of engineered nanoparticles in medicine and biology.
    • 22. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021).
    • 23. Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv. Mater. 30(29), 1705328 (2018).
    • 24. Utreja P, Verma S, Rahman M, Kumar L. Use of nanoparticles in medicine. Curr. Biochem. Eng. 6(1), 7–24 (2020).
    • 25. Missaoui WN, Arnold RD, Cummings BS. Toxicological status of nanoparticles: what we know and what we don't know. Chem. Biol. Interact. 295, 1–12 (2018).
    • 26. Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44(6), 1561–1584 (2015).
    • 27. Mahata MK, Hofsäss HC, Vetter U. Chapter 6: Photon-upconverting materials: advances and prospects for various emerging applications. In: Luminescence: an Outlook on the Phenomena and Their Applications. Thirumalai J (Ed.). BoD – Books on Demand, Goettingen, Germany (2016).
    • 28. Gulzar A, Xu J, Yang P, He F, Xu L. Upconversion processes: versatile biological applications and biosafety. Nanoscale 9(34), 12248–12282 (2017).
    • 29. Haase M, Schäfer H. Upconverting nanoparticles. Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011). •• Details upconverting nanoparticles.
    • 30. Chen G, Qiu H, Prasad PN, Chen X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114(10), 5161–5214 (2014).
    • 31. Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38(4), 976–989 (2009).
    • 32. Rostami I, Rezvani Alanagh H, Hu Z, Shahmoradian SH. Breakthroughs in medicine and bioimaging with up-conversion nanoparticles. Int. J. Nanomed. 14, 7759–7780 (2019). •• Reports on the potential of upconverting nanoparticles in biomedicine.
    • 33. Liang G, Wang H, Shi H et al. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol. 18(1), 154 (2020).
    • 34. Wilhelm S. Perspectives for upconverting nanoparticles. ACS Nano 11(11), 10644–10653 (2017). •• Reveals the important role of upconverting nanoparticles.
    • 35. Misiak M, Skowicki M, Lipiński T et al. Biofunctionalized upconverting CaF2: Yb, Tm nanoparticles for Candida albicans detection and imaging. Nano Res. 10(10), 3333–3345 (2017).
    • 36. Lan J, Li L, Liu Y et al. Upconversion luminescence assay for the detection of the vascular endothelial growth factor, a biomarker for breast cancer. Microchim. Acta 183(12), 3201–3208 (2016).
    • 37. Zhang X, Wang S, Cheng G, Yu P, Chang J. Light-responsive nanomaterials for cancer therapy. Engineering 13, 18–30 (2021).
    • 38. Mitchell MJ, Billingsley MM, Haley RM et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).
    • 39. Beddoes CM, Case CP, Briscoe WH. Understanding nanoparticle cellular entry: a physicochemical perspective. Adv. Colloid Interface Sci. 218, 48–68 (2015).
    • 40. Dror Y, Sorkin R, Brand G et al. The effect of the serum corona on interactions between a single nano-object and a living cell. Sci. Rep. 7, 45758 (2017).
    • 41. Akinc A, Battaglia G. Exploiting endocytosis for nanomedicines. Cold Spring Harb. Perspect. Biol. 5(11), a016980 (2013).
    • 42. Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv. Rev. 144, 90–111 (2019).
    • 43. Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J. Pharm. Sci. 8(1), 1–10 (2013).
    • 44. Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16(3), 266–276 (2021).
    • 45. Behzadi S, Serpooshan V, Tao W et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46(14), 4218–4244 (2017).
    • 46. Manzanares D, Ceña V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 12(4), 371 (2020). •• Details how nanoparticles enter cells.
    • 47. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu. Rev. Biochem. 78(1), 857–902 (2009).
    • 48. Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10(9), 609–622 (2009).
    • 49. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J. Control. Rel. 145(3), 182–195 (2010).
    • 50. Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9(Suppl. 1), 51–63 (2014).
    • 51. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10), 1322–1337 (2011).
    • 52. Nazarenus M, Zhang Q, Soliman MG et al. In vitro interaction of colloidal nanoparticles with mammalian cells: what have we learned thus far? Beilstein J. Nanotechnol. 5(1), 1477–1490 (2014).
    • 53. Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Rivera Gil P. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J. Nanobiotechnol. 10(1), 28 (2012).
    • 54. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnol. 12, 5 (2014).
    • 55. Panariti A, Miserocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol. Sci. Appl. 5, 87–100 (2012).
    • 56. Lynch I, Dawson KA. Protein–nanoparticle interactions. In: Nano-Enabled Medical Applications. Balogh LP (Ed.). Jenny Stanford Publishing, NY, USA, 231–250 (2020).
    • 57. Mortensen NP, Hurst GB, Wang W, Foster CM, Nallathamby PD, Retterer ST. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 5(14), 6372–6380 (2013).
    • 58. Brun E, Sicard-Roselli C. Could nanoparticle corona characterization help for biological consequence prediction? Cancer Nanotechnol. 5(1), 7 (2014).
    • 59. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein–nanoparticle interactions: opportunities and challenges. Chem. Rev. 111(9), 5610–5637 (2011).
    • 60. Mirshafiee V, Kim R, Park S, Mahmoudi M, Kraft ML. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75, 295–304 (2016).
    • 61. Park SJ. Protein–nanoparticle interaction: corona formation and conformational changes in proteins on nanoparticles. Int. J. Nanomed. 15, 5783–5802 (2020).
    • 62. Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of ‘stealthy’ nanomaterials. Front. Bioeng. Biotechnol. 8, 166 (2020).
    • 63. Palanikumar L, Al-Hosani S, Kalmouni M et al. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol. 3(1), 95 (2020).
    • 64. Nam SH, Bae YM, Park YI et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew. Chem. Int. Ed. Engl. 50(27), 6093–6097 (2011).
    • 65. Li X, Tang Y, Xu L et al. Dependence between cytotoxicity and dynamic subcellular localization of up-conversion nanoparticles with different surface charges. RSC Adv. 7(53), 33502–33509 (2017).
    • 66. Gu Y, Qiao X, Zhang J, Sun Y, Tao Y, Qiao S. Effects of surface modification of upconversion nanoparticles on cellular uptake and cytotoxicity. Chem. Res. Chin. Univ. 32(3), 474–479 (2016).
    • 67. Guller AE, Nadort A, Generalova AN et al. Rational surface design of upconversion nanoparticles with polyethylenimine coating for biomedical applications: better safe than brighter? ACS Biomater. Sci. Eng. 4(9), 3143–3153 (2018).
    • 68. Guller AE, Generalova AN, Petersen EV et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 8(5), 1546–1562 (2015).
    • 69. Das GK, Stark DT, Kennedy IM. Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction. Langmuir 30(27), 8167–8176 (2014).
    • 70. Song C, Zhang S, Zhou Q et al. Bifunctional cationic solid lipid nanoparticles of β-NaYF4:Yb,Er upconversion nanoparticles coated with a lipid for bioimaging and gene delivery. RSC Adv. 7(43), 26633–26639 (2017).
    • 71. Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 50(9), 5397–5434 (2021).
    • 72. Tenzer S, Docter D, Kuharev J et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8(10), 772–781 (2013).
    • 73. Chen C, Li C, Shi Z. Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication. Adv. Sci. 3(10), 1600029 (2016).
    • 74. Kowalik P, Elbaum D, Mikulski J et al. Upconversion fluorescence imaging of HeLa cells using ROS generating SiO2-coated lanthanide-doped NaYF4 nanoconstructs. RSC Adv. 7(48), 30262–30273 (2017).
    • 75. Wang F, Deng R, Wang J et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nature Mater. 10, 968–973 (2011).
    • 76. Bogdan N, Vetrone F, Ozin GA, Capobianco JA. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11(2), 835–840 (2011).
    • 77. Sasso L, Purdie L, Grabowska A, Jones AT, Alexander C. Time and cell-dependent effects of endocytosis inhibitors on the internalization of biomolecule markers and nanomaterials. J. Interdiscip. Nanomed. 3(2), 67–81 (2018).
    • 78. Sun J, Liu Y, Ge M et al. A distinct endocytic mechanism of functionalized-silica nanoparticles in breast cancer stem cells. Sci. Rep. 7(1), 16236 (2017).
    • 79. Kuhn DA, Vanhecke D, Michen B et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol. 5(1), 1625–1636 (2014).
    • 80. Liang G, Wang H, Shi H et al. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol. 18(1), 154 (2020).
    • 81. Zhou J, Liu Q, Feng W, Sun Y, Li F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115(1), 395–465 (2015).
    • 82. Wang W, Gaus K, Tilley RD, Gooding JJ. The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us? Mater. Horiz. 6(8), 1538–1547 (2019).
    • 83. Ziegler A, Landfester K, Musyanovych A. Synthesis of phosphonate-functionalized polystyrene and poly(methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization. Colloid Polym. Sci. 287(11), 1261–1271 (2009).
    • 84. Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 7, 587012 (2020).
    • 85. Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyás B. Nanoparticle functionalization and its potentials for molecular imaging. Adv. Sci. 4(3), 1600279 (2016).
    • 86. Schäfer H, Ptacek P, Eickmeier H, Haase M. Synthesis of hexagonal Yb3+, Er3+-doped NaYF4 nanocrystals at low temperature. Adv. Funct. Mater. 19(19), 3091–3097 (2009).
    • 87. Li D, Ågren H, Chen G. Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton Trans. 47(26), 8526–8537 (2018).
    • 88. Li H, Xu L, Chen G. Controlled synthesis of monodisperse hexagonal NaYF4:Yb/Er nanocrystals with ultrasmall size and enhanced upconversion luminescence. Molecules 22(12), 2113 (2017).
    • 89. Zhou R, Ma T, Qiu B, Li X. Controlled synthesis of β-NaYF4: yb, Er microphosphors and upconversion luminescence property. Mater. Chem. Phys. 194, 23–28 (2017).
    • 90. Zajdel K, Janowska J, Frontczak-Baniewicz M, Sypecka J, Sikora B. Upconverting nanoparticles as a new bio-imaging strategy-investigating intracellular trafficking of endogenous processes in neural tissue. Int. J. Mol. Sci. 24(2), 1122 (2023).
    • 91. Borodziuk A, Sulowska K, Zinkiewicz Ł et al. Interaction with silver nanowires disrupts the excitation pathways in upconverting nanoparticles. Phys. Chem. C 126(45), 19219–19228 (2022).
    • 92. Borodziuk A, Baranowski M, Wojciechowski T et al. Excitation efficiency determines the upconversion luminescence intensity of β-NaYF4:Er3+,Yb3+ nanoparticles in magnetic fields up to 70 T. Nanoscale 12(39), 20300–20307 (2020).
    • 93. Borodziuk A, Kowalik P, Duda M et al. Unmodified rose bengal photosensitizer conjugated with NaYF4:Yb,Er upconverting nanoparticles for efficient photodynamic therapy. Nanotechnology 31(46), 465101 (2020).
    • 94. Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Mater. Today Commun. 25, 101692 (2020).
    • 95. Jin J, Gu YJ, Man CW et al. Polymer-coated NaYF4:Yb3+,Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5(10), 7838–7847 (2011).
    • 96. Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev. 115(5), 2109–2135 (2015).
    • 97. Chen M, Zeng G, Xu P, Lai C, Tang L. How do enzymes ‘meet’ nanoparticles and nanomaterials? Trends Biochem. Sci. 42(11), 914–930 (2017).
    • 98. Francia V, Reker-Smit C, Boel G, Salvati A. Limits and challenges in using transport inhibitors to characterize how nano-sized drug carriers enter cells. Nanomedicine 14(12), 1533–1549 (2019).
    • 99. Degors IMS, Wang C, Rehman ZU, Zuhorn IS. Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors. Acc. Chem. Res. 52(7), 1750–1760 (2019).
    • 100. Dutta D, Donaldson JG. Search for inhibitors of endocytosis: intended specificity and unintended consequences. Cell Logist. 2(4), 203–208 (2012).
    • 101. Tsai ES, Joud F, Wiesholler LM, Hirsch T, Hall EAH. Upconversion nanoparticles as intracellular pH messengers. Anal. Bioanal. Chem. 412(24), 6567–6581 (2020).
    • 102. Dutta D, Williamson CD, Cole NB, Donaldson JG. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLOS ONE 7(9), e45799 (2012).
    • 103. Sikora B, Kowalik P, Mikulski J et al. Mammalian cell defence mechanisms against the cytotoxicity of NaYF4:(Er,Yb,Gd) nanoparticles. Nanoscale 9(37), 14259–14271 (2017).
    • 104. Bae YM, Park YI, Nam SH et al. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 33(35), 9080–9086 (2012).
    • 105. Samhadaneh DM, Mandl GA, Han Z et al. Evaluation of lanthanide-doped upconverting nanoparticles for in vitro and in vivo applications. ACS Appl. Bio Mater. 3(7), 4358–4369 (2020).
    • 106. Wang C, He M, Chen B, Hu B. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells. Ecotoxicol. Environ. Saf. 203, 110951 (2020).
    • 107. Ferrera-González J, Francés-Soriano L, Galiana-Roselló C et al. Initial biological assessment of upconversion nanohybrids. Biomedicines 9(10), 1419 (2021).
    • 108. Shen H, Lin Q, Cao W et al. Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots. Nanoscale 9(36), 13583–13591 (2017).
    • 109. Yu Y, Huang T, Wu Y, Ma X, Yu G, Qi J. In-vitro and in-vivo imaging of prostate tumor using NaYF4: Yb, Er up-converting nanoparticles. Pathol. Oncol. Res. 20(2), 335–341 (2014).
    • 110. Zhou M, Ge X, Ke DM et al. The bioavailability, biodistribution, and toxic effects of silica-coated upconversion nanoparticles in vivo. Front. Chem. 7, 218 (2019).
    • 111. Lakshmanan A, Akasov RA, Sholina NV et al. Nanocurcumin-loaded UCNPs for cancer theranostics: physicochemical properties, in vitro toxicity, and in vivo imaging studies. Nanomaterials 11(9), 2234 (2021).
    • 112. Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29(7), 937–943 (2008).
    • 113. Nordmann J, Buczka S, Voss B, Haase M, Mummenhoff K. In vivo analysis of the size- and time-dependent uptake of NaYF4:Yb,Er upconversion nanocrystals by pumpkin seedlings. J. Mater. Chem. B 3(1), 144–150 (2015).
    • 114. Yin W, Zhou L, Ma Y et al. Phytotoxicity, translocation, and biotransformation of NaYF4 upconversion nanoparticles in a soybean plant. Small 11(36), 4774–4784 (2015).