We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Tin-based nanomaterials for biomedical applications

    Proma Nagchowdhury

    Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana State, 500007, India

    Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India

    &
    Chitta Ranjan Patra

    *Author for correspondence: Tel.: +91 402 719 1855;

    E-mail Address: crpatra@iict.res.in

    Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana State, 500007, India

    Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India

    Published Online:https://doi.org/10.2217/nnm-2022-0271
    Free first page

    References

    • 1. Wu B. Effects of trace elements–tin or tin compounds on animals. Austin J. Vet. Sci. Anim. Husb. 6(2), 1055 (2019).
    • 2. Sagadevan S, Lett JA, Fatimah I et al. Current trends in the green syntheses of tin oxide nanoparticles and their biomedical applications. Mater. Res. Express 8(8), 082001 (2021).
    • 3. Rehman S, Asiri SM, Khan FA et al. Biocompatible tin oxide nanoparticles: synthesis, antibacterial, anticandidal and cytotoxic activities. ChemistrySelect 4(14), 4013–4017 (2019).
    • 4. Khan SA, Kanwal S, Rizwan K, Shahid S. Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO2 and co-doped SnO2 nanoparticles from Clerodendrum inerme. Microb. Pathog. 125, 366–384 (2018).
    • 5. Tsangaris JM, Williams DR. Tin in pharmacy and nutrition. Appl. Organomet. Chem. 6(1), 3–18 (1992).
    • 6. Kumar M, Abbas Z, Tuli HS, Rani A. Organotin complexes with promising therapeutic potential. Curr. Pharmacol. Rep. 6, 167–181 (2020).
    • 7. Liu F, Zhang Y, Yu J, Wang S, Ge S, Song X. Application of ZnO/graphene and S6 aptamers for sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin oxide device. Biosens. Bioelectron. 51, 413–420 (2014).
    • 8. Gebreslassie YT, Gebretnsae HG. Green and cost-effective synthesis of tin oxide nanoparticles: a review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res. Lett. 16(1), 1–16 (2021).
    • 9. Qamar MA, Shahid S, Khan SA, Zaman S, Sarwar MN. Synthesis characterization, optical and antibacterial studies of co-doped SnO2 nanoparticles. Dig. J. Nanomater. Biostructures 12(4), 1127–1135 (2017).
    • 10. Ahmaruzzaman M, Mohanta D, Nath A. Environmentally benign fabrication of SnO2-CNT nanohybrids and their multifunctional efficiency as an adsorbent, catalyst and antimicrobial agent for water decontamination. Sci. Rep. 9(1), 1–19 (2019).
    • 11. Ali Baig AB, Rathinam V, Palaninathan J. Photodegradation activity of yttrium-doped SnO2 nanoparticles against methylene blue dye and antibacterial effects. Appl. Water Sci. 10(2), 1–13 (2020).
    • 12. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017).
    • 13. Kamaraj P, Vennila R, Arthanareeswari M, Devikala S. Biological activities of tin oxide nanoparticles synthesized using plant extract. World J. Pharm. Pharm. Sci. 3(9), 382–388 (2014).
    • 14. Das L, Koonathan LD, Kunwar A, Neogy S, Debnath AK, Adhikari S. Nontoxic photoluminescent tin oxide nanoparticles for cell imaging: deep eutectic solvent mediated synthesis, tuning and mechanism. Mater. Adv. 2(13), 4303–4315 (2021).
    • 15. Choudante PC, Nethi SK, Díaz-García D et al. Tin-loaded mesoporous silica nanoparticles: antineoplastic properties and genotoxicity assessment. Biomater. Adv. 137, 212819 (2022).
    • 16. Roopan SM, Kumar SHS, Madhumitha G, Suthindhiran K. Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Appl. Biochem. Biotechnol. 175(3), 1567–1575 (2015).
    • 17. Tammina SK, Mandal BK, Ranjan S, Dasgupta N. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J. Photochem. Photobiol. B Biol. 166, 158–168 (2017).
    • 18. Dobrucka R, Dlugaszewska J, Kaczmarek M. Cytotoxic and antimicrobial effect of biosynthesized SnO2 nanoparticles using Pruni spinosae flos extract. Inorg. Nano-Metal Chem. 48(7), 367–376 (2018).
    • 19. Sharma N, Pandey S, Sharma Ak, Wu HF. Two-dimensional atomically thin tin-based fluorescent oxide synthesized at ambient temperature and its biomedical applications. ACS Sustainable Chem. Eng. 7(8), 7479–7485 (2019).
    • 20. Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: challenges in the nano era. Front. Bioeng. Biotech. 10, 2296–4185 (2022).