We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanocarrier-based delivery of arsenic trioxide for hepatocellular carcinoma therapy

    Jiang Sun

    School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    ,
    Mengying Cheng

    School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    ,
    Tingxian Ye

    School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    ,
    Bin Li

    School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    ,
    Yinghui Wei

    School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    ,
    Hangsheng Zheng

    School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    ,
    Hongyue Zheng

    Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    ,
    Meiqi Zhou

    ***Author for correspondence:

    E-mail Address: zhoumeiqi@zju.edu.cn

    Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China

    ,
    Ji-Gang Piao

    **Author for correspondence:

    E-mail Address: jgpiao@zcmu.edu.cn

    School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    &
    Fanzhu Li

    *Author for correspondence:

    E-mail Address: lifanzhu@zcmu.edu.cn

    School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China

    Published Online:https://doi.org/10.2217/nnm-2022-0250

    Hepatocellular carcinoma (HCC) poses a severe threat to human health and economic development. Despite many attempts at HCC treatment, most are inevitably affected by the genetic instability and variability of tumor cells. Arsenic trioxide (ATO) has shown to be effective in HCC. However, time-consuming challenges, especially the optimal concentration in tumor tissue and bioavailability of ATO, remain to be overcome for its transition from the bench to the bedside. To bypass these issues, nanotechnology-based delivery systems have been developed for prevention, diagnosis, monitoring and treatment in recent years. This article is a systematic overview of the latest contributions and detailed insights into ATO-loaded nanocarriers, with particular attention paid to strategies for improving the efficacy of nanocarriers of ATO.

    Plain language summary

    Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide; it is highly aggressive, has a poor prognosis and is often diagnosed late in the disease course. Arsenic trioxide (ATO), an established agent for the treatment of acute promyelocytic leukemia, has shown powerful therapeutic potential in the treatment of HCC. However, its narrow therapeutic window and severe toxicity, as well as resistance to ATO, limit its application for HCC treatment. Nanocarriers have been employed to deliver ATO to achieve effective therapeutic outcomes in HCC. This review describes the application of various nanocarrier-based delivery systems for ATO to enhance the effectiveness of tumor therapy and reduce its side effects, thus making it a promising therapeutic strategy for in HCC.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics. CA Cancer J. Clin. 72(1), 7–33 (2022).
    • 2. Mao JJ, Pillai GG, Andrade CJ et al. Integrative oncology: addressing the global challenges of cancer prevention and treatment. CA Cancer J. Clin. 72(2), 144–164 (2022).
    • 3. Qu J, Kalyani FS, Liu L, Cheng T, Chen L. Tumor organoids: synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Commun. (Lond.) 41(12), 1331–1353 (2021).
    • 4. Bodei L, Herrmann K, Schöder H et al. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat. Rev. Clin. Oncol. 19(8), 534–550 (2021).
    • 5. D'Alterio C, Scala S, Sozzi G et al. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin. Cancer Biol. 60, 351–361 (2020).
    • 6. Cheng X, Zhang H, Hamad A et al. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin. Cancer Biol. 86(Pt3) 408–419 (2022).
    • 7. Wang Y, Zhang H, Liu C et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J. Hematol. Oncol. 15(1), 111 (2022).
    • 8. Bergholz JS, Wang Q, Kabraji S, Zhao JJ. Integrating immunotherapy and targeted therapy in cancer treatment: mechanistic insights and clinical implications. Clin. Cancer Res. 26(21), 5557–5566 (2020).
    • 9. Wang J, Wong YK, Liao F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev. Mol. Med. 20, e4 (2018).
    • 10. Kulkarni UP, Selvarajan S, Lionel S et al. Real world data with concurrent retinoic acid and arsenic trioxide for the treatment of acute promyelocytic leukemia. Blood Cancer J. 12(1), 22 (2022).
    • 11. Kayser S, Schlenk RF, Lebon D et al. Characteristics and outcome of patients with low-/intermediate-risk acute promyelocytic leukemia treated with arsenic trioxide: an international collaborative study. Haematologica 106(12), 3100–3106 (2021).
    • 12. Liu C, Hu A, Chen H et al. The osteogenic niche-targeted arsenic nanoparticles prevent colonization of disseminated breast tumor cells in the bone. Acta Pharm. Sin. B 12(1), 364–377 (2022).
    • 13. Liu X, Su Y, Sun X et al. Arsenic trioxide alleviates acute graft-versus-host disease by modulating macrophage polarization. Sci. China Life Sci. 63(11), 1744–1754 (2020).
    • 14. Mu M, Zhao H, Wang Y et al. Arsenic trioxide or/and copper sulfate co-exposure induce glandular stomach of chicken injury via destruction of the mitochondrial dynamics and activation of apoptosis as well as autophagy. Ecotoxicol. Environ. Saf. 185, 109678 (2019).
    • 15. Bell JB, Eckerdt F, Dhruv HD et al. Differential response of glioma stem cells to arsenic trioxide therapy is regulated by MNK1 and mRNA translation. Mol. Cancer Res. 16(1), 32–46 (2018).
    • 16. Qiu Y, Dai Y, Zhang C et al. Arsenic trioxide reverses the chemoresistance in hepatocellular carcinoma: a targeted intervention of 14-3-3ν/NF-κB feedback loop. J. Exp. Clin. Cancer Res. 37(1), 321 (2018).
    • 17. Zhang X, Hu B, Sun YF et al. Arsenic trioxide induces differentiation of cancer stem cells in hepatocellular carcinoma through inhibition of LIF/JAK1/STAT3 and NF-kB signaling pathways synergistically. Clin. Transl. Med. 11(2), e335 (2021).
    • 18. Wang HY, Zhang B, Zhou JN et al. Arsenic trioxide inhibits liver cancer stem cells and metastasis by targeting SRF/MCM7 complex. Cell Death Dis. 10(6), 453 (2019).
    • 19. Nurchi VM, Djordjevic AB, Crisponi G et al. Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules 10(2), 235 (2020).
    • 20. Ro SH, Bae J, Jang Y et al. Arsenic toxicity on metabolism and autophagy in adipose and muscle tissues. Antioxidants 11(4), 689 (2022).
    • 21. Hirano S. Biotransformation of arsenic and toxicological implication of arsenic metabolites. Arch. Toxicol. 94(8), 2587–2601 (2020). • Describes the relationship between the toxicity and biotransformation of arsenic.
    • 22. Sönksen M, Kerl K, Bunzen H. Current status and future prospects of nanomedicine for arsenic trioxide delivery to solid tumors. Med. Res. Rev. 42(1), 374–398 (2022). •• A recent review on the application of nanomedicine for arsenic trioxide delivery in the treatment of solid tumors.
    • 23. Yu M, Zhang Y, Fang M et al. Current advances of nanomedicines delivering arsenic trioxide for enhanced tumor therapy. Pharmaceutics 14(4), 743 (2022).
    • 24. Kumagai Y, Sumi D. Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu. Rev. Pharmacol. Toxicol. 47, 243–262 (2007). • Describes recent progress in arsenic toxicity.
    • 25. Chen QY, DesMarais T, Costa M. Metals and mechanisms of carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 59, 537–554 (2019).
    • 26. Sun Y, Liu G, Cai Y. Thiolated arsenicals in arsenic metabolism: occurrence, formation, and biological implications. J. Environ. Sci. (China) 49, 59–73 (2016).
    • 27. Herath I, Vithanage M, Seneweera S, Bundschuh J. Thiolated arsenic in natural systems: what is current, what is new and what needs to be known. Environ. Int. 115, 370–386 (2018).
    • 28. Wang Y, Yang XF, Zhong Y et al. Development of a red fluorescent light-up probe for highly selective and sensitive detection of vicinal dithiol-containing proteins in living cells. Chem. Sci. 7(1), 518–524 (2016).
    • 29. Chen FY, Yi JW, Gu ZJ et al. Inorganic phosphate-triggered release of anti-cancer arsenic trioxide from a self-delivery system: an in vitro and in vivo study. Nanoscale 8, 6094–100 (2016).
    • 30. Liu G, Song Y, Li C et al. Arsenic compounds: the wide application and mechanisms applied in acute promyelocytic leukemia and carcinogenic toxicology. Eur. J. Med. Chem. 221, 113519 (2021).
    • 31. Medda N, De SK, Maiti S. Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation. Ecotoxicol. Environ. Saf. 208, 111752 (2021). • Introduces the mechanisms of arsenic in cellular proferation, apoptosis and neoplastic transformation.
    • 32. Siu KP, Chan JY, Fung KP. Effect of arsenic trioxide on human hepatocellular carcinoma HepG2 cells: inhibition of proliferation and induction of apoptosis. Life Sci. 71(3), 275–285 (2002).
    • 33. Sadaf N, Kumar N, Ali M et al. Arsenic trioxide induces apoptosis and inhibits the growth of human liver cancer cells. Life Sci. 205, 9–17 (2018).
    • 34. Wang C, Ning Z, Wan F et al. Characterization of the cellular effects and mechanism of arsenic trioxide-induced hepatotoxicity in broiler chickens. Toxicol. In Vitro 61, 104629 (2019).
    • 35. Wang J, Peng X, Yang D et al. Bcl-2 hijacks the arsenic trioxide resistance in SH-SY5Y cells. J. Cell Mol. Med. 26(2), 563–569 (2022).
    • 36. Miller WH Jr, Schipper HM, Lee JS et al. Mechanisms of action of arsenic trioxide. Cancer Res. 62(14), 3893–3903 (2002).
    • 37. Jiang H, Ma Y, Chen X et al. Genistein synergizes with arsenic trioxide to suppress human hepatocellular carcinoma. Cancer Sci. 101(4), 975–983 (2010).
    • 38. Brown E, Yedjou CG, Tchounwou PB. Cytotoxicity and oxidative stress in human liver carcinoma cells exposed to arsenic trioxide (HepG2). Met. Ions. Biol. Med. 10, 583–587 (2008).
    • 39. Yoo DR, Chong SA, Nam MJ. Proteome profiling of arsenic trioxide-treated human hepatic cancer cells. Cancer Genomics Proteomics 6(5), 269–274 (2009).
    • 40. Dugo EB, Yedjou CG, Stevens JJ, Tchounwou PB. Therapeutic potential of arsenic trioxide (ATO) in treatment of hepatocellular carcinoma: role of oxidative stress in ATO-induced apoptosis. Ann. Clin. Pathol. 5(1), 1101 (2017).
    • 41. Yuan M, Sun Z, Manthari RK et al. Arsenic-induced autophagy regulates apoptosis in AML-12 cells. Toxicol. In Vitro 72, 105074 (2021).
    • 42. Saretzki G. Telomeres, telomerase and ageing. Subcell. Biochem. 90, 221–308 (2018).
    • 43. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell 176(6), 1248–1264 (2019).
    • 44. Fukumura D, Kloepper J, Amoozgar Z et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15(5), 325–340 (2018).
    • 45. Zhang F, Zhang CM, Li S et al. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis. Mol. Med. Rep. 17(1), 1573–1582 (2018).
    • 46. Zhang X, Jia S, Yang S et al. Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression. J. Cell Biochem. 113(11), 3528–3535 (2012).
    • 47. Fei M, Lu M, Wang Y et al. Arsenic trioxide-induced growth arrest of human hepatocellular carcinoma cells involving FOXO3a expression and localization. Med. Oncol. 26(2), 178–185 (2009).
    • 48. Cai X, Yu L, Chen Z et al. Arsenic trioxide-induced upregulation of mir-1294 suppresses tumor growth in hepatocellular carcinoma by targeting TEAD1 and PIM1. Cancer Biomark. 28(2), 221–230 (2020).
    • 49. Meng XZ, Zheng TS, Chen X et al. MicroRNA expression alteration after arsenic trioxide treatment in HepG-2 cells. J. Gastroenterol. Hepatol. 26(1), 186–193 (2011).
    • 50. Zhao XS, Song PL, Sun B et al. Arsenic trioxide inhibits metastatic potential of mouse hepatoma H22 cells in vitro and in vivo. Hepatobiliary Pancreat. Dis. Int. 8(5), 510–517 (2009).
    • 51. Fan Z, He J, Fu T et al. Arsenic trioxide inhibits EMT in hepatocellular carcinoma by promoting lncRNA MEG3 via PKM2. Biochem. Biophys. Res. Commun. 513(4), 834–840 (2019).
    • 52. Cui L, Gao B, Cao Z et al. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol. Med. Rep. 13(3), 2032–2038 (2016).
    • 53. Wang L, Wang R, Fan L et al. Arsenic trioxide is an immune adjuvant in liver cancer treatment. Mol. Immunol. 81, 118–126 (2017).
    • 54. Winter ND, Murphy RK, O'Halloran TV, Schatz GC. Development and modeling of arsenic-trioxide-loaded thermosensitive liposomes for anticancer drug delivery. J. Liposome Res. 21(2), 106–115 (2011).
    • 55. Wang L, Zhang J, An Y et al. A study on the thermochemotherapy effect of nanosized As2O3/MZF thermosensitive magnetoliposomes on experimental hepatoma in vitro and in vivo. Nanotechnology 22(31), 315102 (2011).
    • 56. Antimisiaris SG, Ioannou PV. Arsonoliposomes: preparation and physicochemical characterization. Methods Mol. Biol. 605, 147–162 (2010).
    • 57. Mourtas S, Papadia K, Kordopati GG et al. Synthesis of novel arsonolipids and development of novel arsonoliposome types. Pharmaceutics 14(8), 1649 (2022).
    • 58. Chen H, MacDonald RC, Li S et al. Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release. J. Am. Chem. Soc. 128(41), 13348–13349 (2006). •• Describes a novel liposomal nanocarrier for controlling arsenic trioxide release.
    • 59. Li C, Zhang K, Liu A et al. MMP2-responsive dual-targeting drug delivery system for valence-controlled arsenic trioxide prodrug delivery against hepatic carcinoma. Int. J. Pharm. 609, 121209 (2021).
    • 60. Fatouros DG, Ioannou PV, Antimisiaris SG. Arsonoliposomes: novel nanosized arsenic-containing vesicles for drug delivery. J. Nanosci. Nanotechnol. 6(9-10), 2618–2637 (2006).
    • 61. Gortzi O, Papadimitriou E, Kontoyannis CG et al. Arsonoliposomes, a novel class of arsenic-containing liposomes: effect of palmitoyl-arsonolipid-containing liposomes on the viability of cancer and normal cells in culture. Pharm. Res. 19(1), 79–86 (2002).
    • 62. Finke H, Wandt VK, Ebert F et al. Toxicological assessment of arsenic-containing phosphatidylcholines in HepG2 cells. Metallomics 12(7), 1159–1170 (2020).
    • 63. Haikou MN, Zagana P, Ioannou PV, Antimisiaris SG. Arsonoliposome interaction with thiols: effect of pegylation and arsonolipid content of arsonoliposomes on their integrity during incubation in glutathione. J. Nanosci. Nanotechnol. 6(9–10), 2974–2978 (2006).
    • 64. Jin Z, Yi X, Yang J, Zhou M, Wu P, Yan G. Liposome-coated arsenic-manganese complex for magnetic resonance imaging-guided synergistic therapy against carcinoma. Int. J. Nanomed. 16, 3775–3788 (2021).
    • 65. Wang S, Liu C, Wang C et al. Arsenic trioxide encapsulated liposomes prepared via copper acetate gradient loading method and its antitumor efficiency. Asian J. Pharm. Sci. 15(3), 365–373 (2020).
    • 66. Chen H, Ahn R, Van den Bossche J et al. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol. Cancer Ther. 8(7), 1955–1963 (2009).
    • 67. De R, Mahata MK, Kim KT. Structure-based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv. Sci. (Weinh) 9(10), e2105373 (2022).
    • 68. Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 496(2), 173–190 (2015).
    • 69. Wang ZQ, Liu W, Xu HB et al. Preparation and in vitro studies of stealth PEGylated PLGA nanocarriers as carriers for arsenic trioxide. Chin. J. Chem. Eng. 15, 795–801 (2007).
    • 70. Singh N, Son S, An J et al. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem. Soc. Rev. 50(23), 12883–12896 (2021).
    • 71. Chen WH, Chen QW, Chen Q et al. Biomedical polymers: synthesis, properties, and applications. Sci. China Chem. 65(6), 1010–1075 (2022).
    • 72. Yin XB, Wu LQ, Huang MW et al. Humanized anti-VEGFR-2 ScFv-ATO-stealth nanocarriers, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity. Biomed. Pharmacother. 68(5), 597–602 (2014).
    • 73. Song X, You J, Shao H, Yan C. Effects of surface modification of ATO-loaded PLGA nanocarriers on its anti-liver cancer ability: an in vitro and in vivo study. Colloids Surf. B Biointerfaces 169, 289–297 (2018).
    • 74. Song X, Wang J, Xu Y et al. Surface-modified PLGA nanocarriers with PEG/LA-chitosan for targeted delivery of arsenic trioxide for liver cancer treatment: inhibition effects enhanced and side effects reduced. Colloids Surf. B Biointerfaces 180, 110–117 (2019).
    • 75. Lian Y, Wang X, Guo P et al. Erythrocyte membrane-coated arsenic trioxide-loaded sodium alginate nanoparticles for tumor therapy. Pharmaceutics 12(1), 21 (2019).
    • 76. Bizeau J, Mertz D. Design and applications of protein delivery systems in nanomedicine and tissue engineering. Adv. Colloid Interface Sci. 287, 102334 (2021).
    • 77. Iqbal H, Yang T, Li T et al. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Rel. 329, 997–1022 (2021).
    • 78. Lei C, Liu XR, Chen QB et al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Rel. 331, 416–433 (2021).
    • 79. Cen D, Ge Q, Xie C et al. ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy. Adv. Mater. 33(49), e2104037 (2021). • Introduces an arsenic trioxide-based nanoclusters for enhancement of immunotherapy efficacy against hepatocellular carcinoma.
    • 80. Ding Y, Zhang S, Sun Z et al. Preclinical validation of silibinin/albumin nanoparticles as an applicable system against acute liver injury. Acta Biomater. 146, 385–395 (2022).
    • 81. Zhang N, Mei K, Guan P, Hu X, Zhao Y. Protein-based artificial nanosystems in cancer therapy. Small 16(23), e1907256 (2020).
    • 82. Katouzian I, Jafari SM. Protein nanotubes as state-of-the-art nanocarriers: synthesis methods, simulation and applications. J. Control. Rel. 303, 302–318 (2019).
    • 83. Miao L, Lin J, Huang Y et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11(1), 2424 (2020).
    • 84. Yang Z, Yang M, Peng J. Evaluation of arsenic trioxide-loaded albumin nanoparticles as carriers: preparation and antitumor efficacy. Drug Dev. Ind. Pharm. 34(8), 834–839 (2008).
    • 85. Huang Y, Xu Z, Wei Y, Han S, Cai X, Chen D. Albumin-embellished arsenic trioxide-loaded polymeric nanoparticles enhance tumor accumulation and anticancer efficacy via transcytosis for hepatocellular carcinoma therapy. AAPS PharmSciTech 23(4), 111 (2022).
    • 86. Zhang K, Li D, Zhou B et al. Arsenite-loaded albumin nanoparticles for targeted synergistic chemo-photothermal therapy of HCC. Biomater. Sci. 10(1), 243–257 (2021).
    • 87. Wang C, Zhang W, He Y et al. Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects. Nat. Nanotechnol. 16(12), 1413–1423 (2021).
    • 88. Cioloboc D, Kurtz DM Jr. Targeted cancer cell delivery of arsenate as a reductively activated prodrug. J. Biol. Inorg. Chem. 25(3), 441–449 (2020).
    • 89. Khatik R, Wang Z, Zhi D et al. Integrin αvβ3 receptor overexpressing on tumor-targeted positive MRI-guided chemotherapy. ACS Appl. Mater. Interfaces 12(1), 163–176 (2020).
    • 90. Yin XB, Wu LQ, Fu HQ et al. Inhibitory effect of humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles conjugate on growth of human hepatocellular carcinoma: in vitro and in vivo studies. Asian Pac. J. Trop. Med. 7(5), 337–343 (2014).
    • 91. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat. Mater. 8(1), 15–23 (2009).
    • 92. Peng Y, Zhao Z, Liu T et al. Smart human-serum-albumin-As2O3 nanodrug with self-amplified folate receptor-targeting ability for chronic myeloid leukemia treatment. Angew. Chem. Int. Ed. Engl. 56(36), 10845–10849 (2017).
    • 93. Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnol. 19(1), 159 (2021).
    • 94. Vallet-Regí M, Schüth F, Lozano D et al. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem. Soc. Rev. 51(13), 5365–5451 (2022).
    • 95. Escriche-Navarro B, Escudero A, Lucena-Sánchez E et al. Mesoporous silica materials as an emerging tool for cancer immunotherapy. Adv. Sci. 9(26), e2200756 (2022).
    • 96. Barkat A, Beg S, Panda SK et al. Functionalized mesoporous silica nanoparticles in anticancer therapeutics. Semin. Cancer Biol. 69, 365–375 (2021).
    • 97. Li T, Shi S, Goel S et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater. 89, 1–13 (2019).
    • 98. Xiao X, Liu Y, Guo M et al. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. J. Biomater. Appl. 31(1), 23–35 (2016).
    • 99. Fei W, Zhang Y, Han S et al. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. Int. J. Pharm. 519(1–2), 250–262 (2017).
    • 100. Ellison PA, Chen F, Goel S et al. Intrinsic and stable conjugation of thiolated mesoporous silica nanoparticles with radioarsenic. ACS Appl. Mater. Interfaces 9(8), 6772–6781 (2017).
    • 101. Gavilán H, Avugadda SK, Fernández-Cabada T et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem. Soc. Rev. 50(20), 11614–11667 (2021).
    • 102. Chung S, Revia RA, Zhang M. Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy. Nanoscale Horiz. 6(9), 696–717 (2021).
    • 103. de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv. Drug Deliv. Rev. 189, 114484 (2022).
    • 104. Wang ZY, Song J, Zhang DS. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. World J. Gastroenterol. 15(24), 2995–3002 (2009).
    • 105. Wu Q, Chen X, Wang P et al. Delivery of arsenic trioxide by multifunction nanoparticles to improve the treatment of hepatocellular carcinoma. ACS Appl. Mater. Interfaces 12(7), 8016–8029 (2020). •• Describes a nano-zirconia loading platform combining chemotherapy and microwave heat therapy for the noninvasive treatment of hepatocellular carcinoma.
    • 106. Rathi BS, Kumar PS. A review on sources, identification and treatment strategies for the removal of toxic arsenic from water system. J. Hazard. Mater. 418, 126299 (2021).
    • 107. Wang Y, Liu Y, Guo T et al. Lanthanum hydroxide: a highly efficient and selective adsorbent for arsenate removal from aqueous solution. Environ. Sci. Pollut. Res. Int. 27(34), 42868–42880 (2020).
    • 108. Zhao Z, Wang X, Zhang Z et al. Real-time monitoring of arsenic trioxide release and delivery by activatable T(1) imaging. ACS Nano 9(3), 2749–2759 (2015). •• Describes a multimodal imaging-guided and multifunctional platform for the treatment of hepatocellular carcinoma.
    • 109. Chi X, Yin Z, Jin J et al. Arsenite-loaded nanoparticles inhibit the invasion and metastasis of a hepatocellular carcinoma: in vitro and in vivo study. Nanotechnology 28(44), 445101 (2017).
    • 110. Klostergaard J, Seeney CE. Magnetic nanovectors for drug delivery. Nanomedicine 8(Suppl. 1), S37–S50 (2012).
    • 111. Zhang Z, Liu H, Zhou H et al. A facile route to core-shell nanoparticulate formation of arsenic trioxide for effective solid tumor treatment. Nanoscale 8(7), 4373–4380 (2016).
    • 112. Chi X, Zhang R, Zhao T et al. Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. Nanotechnology 30(17), 175101 (2019).
    • 113. Robertson AG, Rendina LM. Gadolinium theranostics for the diagnosis and treatment of cancer. Chem. Soc. Rev. 50(7), 4231–4244 (2021).
    • 114. Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J. Control. Rel. 329, 482–512 (2021).
    • 115. Ji Y, Kowalski PM, Kegler P et al. Rare-earth orthophosphates from atomistic simulations. Front. Chem. 7, 197 (2019).
    • 116. Wang P, He X, Zhang W et al. Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions. Water Res. 177, 115752 (2020).
    • 117. Khatik R, Wang Z, Zhi D et al. Integrin αvβ3 receptor overexpressing on tumor-targeted positive MRI-guided chemotherapy. ACS Appl. Mater. Interfaces 12(1), 163–176 (2020).
    • 118. Fu X, Luo RG, Qiu W et al. Sustained release of arsenic trioxide benefits interventional therapy on rabbit VX2 liver tumor. Nanomedicine 24, 102118 (2020).
    • 119. Bi QC, Tang JJ, Zhao J et al. Sevelamer arsenite nanoparticle as a Pi-responsive drug carrier and embolic agent for chemoembolization. Drug Deliv. 29(1), 1447–1456 (2022).
    • 120. Huang Y, Zhou B, Luo H et al. ZnAs@SiO2 nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics 9(15), 4391–4408 (2019).
    • 121. Mottaghitalab F, Farokhi M, Fatahi Y et al. New insights into designing hybrid nanoparticles for lung cancer: diagnosis and treatment. J. Control. Rel. 295, 250–267 (2019).
    • 122. Liao Y, Zhang Y, Blum NT et al. Biomimetic hybrid membrane-based nanoplatforms: synthesis, properties and biomedical applications. Nanoscale Horiz. 5(9), 1293–1302 (2020).
    • 123. Wei D, Yang H, Zhang Y et al. Nano-traditional Chinese medicine: a promising strategy and its recent advances. J. Mater. Chem. B 10(16), 2973–2994 (2022).
    • 124. Biddeci G, Spinelli G, Colomba P, Di Blasi F. Nanomaterials: a review about halloysite nanotubes, properties, and application in the biological field. Int. J. Mol. Sci. 23(19), 11518 (2022).
    • 125. Yang C, Lin ZI, Chen JA et al. Organic/inorganic self-assembled hybrid nano-architectures for cancer therapy applications. Macromol. Biosci. 22(2), e2100349 (2022).
    • 126. Ding X, Li D, Jiang J. Gold-based inorganic nanohybrids for nanomedicine applications. Theranostics 10(18), 8061–8079 (2020).
    • 127. Birk SE, Boisen A, Nielsen LH. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv. Drug. Deliv. Rev. 174, 30–52 (2021).
    • 128. Timin AS, Litvak MM, Gorin DA et al. Cell-based drug delivery and use of nano-and microcarriers for cell functionalization. Adv. Healthc. Mater. 7(3), 1700818 (2018).
    • 129. Shait Mohammed MR, Ahmad V, Ahmad A et al. Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. Semin. Cancer Biol. 69, 129–139 (2021).
    • 130. Li Q, Liu Y, Zhang Y, Jiang W. Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks. J. Control. Rel. 347, 183–198 (2022).
    • 131. Esrafili A, Wagner A, Inamdar S, Acharya AP. Covalent organic frameworks for biomedical applications. Adv. Healthc. Mater. 10(6), e2002090 (2021).
    • 132. Yang J, Yang YW. Metal-organic frameworks for biomedical applications. Small 16(10), e1906846 (2020).
    • 133. Chen X, Huang Y, Chen H et al. Augmented EPR effect post IRFA to enhance the therapeutic efficacy of arsenic loaded ZIF-8 nanoparticles on residual HCC progression. J. Nanobiotechnol. 20(1), 34 (2022).
    • 134. Wu Y, Du D, Chen J, Liu C. Preparation of PLGA microspheres loaded with 10-hydroxycamptothecin and arsenic trioxide and their treatment for rabbit hepatocellular carcinoma. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 165(1), 57–63 (2021).
    • 135. Liu H, Zhang Z, Chi X et al. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells. Sci. Rep. 6, 31009 (2016).
    • 136. Zhi D, Yang T, O'Hagan J et al. Photothermal therapy. J. Control. Rel. 325, 52–71 (2020).
    • 137. Li L, Zhang X, Zhou J et al. Non-invasive thermal therapy for tissue engineering and regenerative medicine. Small 18(36), e2107705 (2022).
    • 138. Xu Q, Li Q, Yang Z et al. Lenvatinib and Cu2-xS nanocrystals co-encapsulated in poly(D,L-lactide-co-glycolide) for synergistic chemo-photothermal therapy against advanced hepatocellular carcinoma. J. Mater. Chem. B 9(48), 9908–9922 (2021).
    • 139. Fan Z, Zhuang C, Wang S, Zhang Y. Photodynamic and photothermal therapy of hepatocellular carcinoma. Front. Oncol. 11, 787780 (2021).
    • 140. Wang ZY, Wang L, Zhang J et al. A study on the preparation and characterization of plasmid DNA and drug-containing magnetic nanoliposomes for the treatment of tumors. Int. J. Nanomed. 6, 871–875 (2011).
    • 141. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics-challenges and potential solutions. Nat. Rev. Drug Discov. 20(8), 629–651 (2021).
    • 142. Wei L, Wang X, Lv L et al. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol. Cancer 18(1), 147 (2019).
    • 143. Hill M, Tran N. MiRNA interplay: mechanisms and consequences in cancer. Dis Model. Mech. 14(4), dmm047662 (2021).
    • 144. Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin. Cancer Biol. 75, 3–14 (2021).
    • 145. Mukherjee A, Acharya PB, Singh A et al. Identification of therapeutic miRNAs from the arsenic induced gene expression profile of hepatocellular carcinoma. Chem. Biol. Drug Des. 10.1111/cbdd.14132 (2022).
    • 146. Zhu C, Zhou R, Zhou Q et al. MicroRNA-539 suppresses tumor growth and tumorigenesis and overcomes arsenic trioxide resistance in hepatocellular carcinoma. Life Sci. 166, 34–40 (2016).
    • 147. Wang Y, Jiang F, Jiao K et al. De-methylation of miR-148a by arsenic trioxide enhances sensitivity to chemotherapy via inhibiting the NF-κB pathway and CSC like properties. Exp. Cell Res. 386(2), 111739 (2020).
    • 148. Hu J, Pei W, Jiang Z et al. A combined miR-34a and arsenic trioxide nanodrug delivery system for synergistic inhibition of HCC progression after microwave ablation. Cancer Nano. 12, 1 (2021).
    • 149. Llovet JM, Castet F, Heikenwalder M et al. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 19(3), 151–172 (2022).
    • 150. Sperandio RC, Pestana RC, Miyamura BV, Kaseb AO. Hepatocellular carcinoma immunotherapy. Annu. Rev. Med. 73, 267–278 (2022).
    • 151. Yu WD, Sun G, Li J et al. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 452, 66–70 (2019).
    • 152. Yap TA, Parkes EE, Peng W et al. Development of immunotherapy combination strategies in cancer. Cancer Discov. 11(6), 1368–1397 (2021).
    • 153. Luo L, Qiao H, Meng F et al. Arsenic trioxide synergizes with B7H3-mediated immunotherapy to eradicate hepatocellular carcinomas. Int. J. Cancer 118(7), 1823–1830 (2006).
    • 154. Zhai Y, Liu M, Yang T et al. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J. Control. Rel. 350, 761–776 (2022).
    • 155. Venditto VJ, Szoka FC Jr. Cancer nanomedicines: so many papers and so few drugs! Adv. Drug Deliv. Rev. 65(1), 80–88 (2013).
    • 156. Dutta R, Mahato RI. Recent advances in hepatocellular carcinoma therapy. Pharmacol. Ther. 173, 106–117 (2017).
    • 157. Duan XH, Ju SG, Han XW et al. Arsenic trioxide-eluting Callispheres beads is more effective and equally tolerant compared with arsenic trioxide/lipiodol emulsion in the transcatheter arterial chemoembolization treatment for unresectable hepatocellular carcinoma patients. Eur. Rev. Med. Pharmacol. Sci. 24(3), 1468–1480 (2020).
    • 158. Liu J, Zhang W, Lu H et al. Drug-eluting bead trans-arterial chemoembolization combined with microwave ablation therapy vs. microwave ablation alone for early stage hepatocellular carcinoma: a preliminary investigation of clinical value. J. Cancer Res. Clin. Oncol. 148(7), 1781–1788 (2022).
    • 159. Kong D, Jiang T, Liu J et al. Chemoembolizing hepatocellular carcinoma with microsphere cored with arsenic trioxide microcrystal. Drug Deliv. 27(1), 1729–1740 (2020).
    • 160. Hu J, Dong Y, Ding L et al. Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment. Signal Transduct. Target. Ther. 4, 28 (2019).
    • 161. Duan X, Li H, Han X et al. Antitumor properties of arsenic trioxide-loaded CalliSpheres® microspheres by transarterial chemoembolization in VX2 liver tumor rabbits: suppression of tumor growth, angiogenesis, and metastasis and elongation of survival. Am. J. Transl. Res. 12(9), 5511–5524 (2020).