We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles

    Fateme Davarani Asl

    Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 88138-33435, Iran

    ,
    Marziyeh Mousazadeh

    Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran

    ,
    Shirinsadat Taji

    Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran

    Institute for Genetics, University of Cologne, Cologne, D-50674, Germany

    ,
    Abbas Bahmani

    Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, 14588-89694, Iran

    ,
    Patricia Khashayar

    Center for Microsystems Technology, Imec & Ghent University, Ghent, 9050, Belgium

    ,
    Mostafa Azimzadeh

    *Author for correspondence: Tel.: +98 912 368 6413;

    E-mail Address: m.azimzadeh@ssu.ac.ir

    Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89195-999, Iran

    &
    Ebrahim Mostafavi

    **Author for correspondence: Tel.: +1 617 513 0314;

    E-mail Address: ebi.mostafavi@gmail.com

    Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA

    Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA

    Published Online:https://doi.org/10.2217/nnm-2022-0248

    AIDS causes increasing mortality every year. With advancements in nanomedicine, different nanomaterials (NMs) have been applied to treat AIDS and overcome its limitations. Among different NMs, nanoparticles (NPs) can act as nanocarriers due to their enhanced solubility, sustained release, targeting abilities and facilitation of drug–dose reductions. This review discusses recent advancements in therapeutics for AIDS/HIV using various NMs, mainly focused on three classifications: polymeric, liposomal and inorganic NMs. Polymeric dendrimers, polyethylenimine-NPs, poly(lactic-co-glycolic acid)-NPs, chitosan and the use of liposomal-based delivery systems and inorganic NPs, including gold and silver NPs, are explored. Recent advances, current challenges and future perspectives on the use of these NMs for better management of HIV/AIDS are also discussed.

    Plain language summary

    AIDS is a disease affecting many worldwide. Since it is difficult to cure AIDS, new therapies have been developed. Tiny materials called nanoparticles with promising features are used to carry different drugs to relevant organs in the body. There are various nanoparticles with different textures and shapes used in AIDS therapy. Branched nanoparticles, nanoparticles with repetitive building blocks and metal-based nanoparticles are three commonly used nanoparticles in AIDS treatment that are studied in this review. These tiny materials can find the exact place in the body to deliver drugs. They can also reduce the side effects of anti-AIDS drugs and help patients use fewer drugs while getting the same or better results.

    Tweetable abstract

    In this review, recent advances, current challenges and future perspectives in the use of liposomal-based delivery systems and inorganic nanoparticles (including gold and silver nanoparticles) for better management of HIV/AIDS are critically discussed.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Oti VB. Nanoparticles and its implications in HIV/AIDS therapy. Curr. Drug Discov. Technol. 17(4), 448–456 (2020).
    • 2. Rodrigo MAM, Heger Z, Cernei N et al. HIV biosensors–the potential of the electrochemical way. Int. J. Electrochem. Sci. 9(7), 3449–3457 (2014).
    • 3. Milowska K, Rodacka A, Melikishvili S et al. Dendrimeric HIV-peptide delivery nanosystem affects lipid membranes structure. Sci. Rep. 11(1), 16810 (2021).
    • 4. German Advisory Committee Blood (Arbeitskreis Blut), Subgroup Assessment of Pathogens Transmissible by Blood. Human immunodeficiency virus (HIV). Transfus. Med. Hemother. 43(3), 203–222 (2016).
    • 5. Behrouz R, Topel CH, Seifi A et al. Risk of intracerebral hemorrhage in HIV/AIDS: a systematic review and meta-analysis. J. Neurovirol. 22(5), 634–640 (2016).
    • 6. Latest HIV Estimates and Updates on HIV Policies Uptake, July 2020 Global HIV, Hepatitis and STI Programmes. In: Global HIV, Hepatitis and STI Programmes. WHO, Geneva, Switzerland (2020). https://cdn.who.int/media/docs/default-source/hiv-hq/presentation-international-aids-conference-2020_d5a25ad7-6dab-4600-81d8-e52d3ae66b83.pdf?sfvrsn=cbd9bbc_4
    • 7. Li G, De Clercq E. HIV genome-wide protein associations: a review of 30 years of research. Microbiol. Mol. Biol. Rev. 80(3), 679–731 (2016).
    • 8. Seitz R. Human immunodeficiency virus (HIV). Transfus. Med. Hemother. 43(3), 203–222 (2016).
    • 9. Louboutin J-P, Strayer DS. Gene delivery of antioxidant enzymes in HIV-1-associated neurocognitive disorder. In: HIV/AIDS Oxidative Stress and Dietary Antioxidants. Preedy VRWatson RR (Eds). Academic Press, MA, USA, 107–123 (2018).
    • 10. Smith RL, de Boer R, Brul S, Budovskaya Y, van der Spek H. Premature and accelerated aging: HIV or HAART? Front. Genet. 3, 328 (2013).
    • 11. Das MK, Sarma A, Chakraborty T. Nano-ART and NeuroAIDS. Drug Deliv. Transl. Res. 6(5), 452–472 (2016).
    • 12. Torchilin VP. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 58(14), 1532–1555 (2006).
    • 13. Oti VB. Nanoparticles and its implications in HIV/AIDS therapy. Curr. Drug Discov. Technol. 17(4), 448–456 (2019).
    • 14. Mostafavi E, Soltantabar P, Webster TJ. Nanotechnology and picotechnology: a new arena for translational medicine. In: Biomaterials in Translational Medicine. Yang LBhaduri SBWebster TJ (Eds). Academic Press, MA, USA, 191–212 (2018).
    • 15. Farzin L, Shamsipur M, Samandari L, Sheibani S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: a review. Microchimica Acta 185(5), 276 (2018).
    • 16. Saravanan M, Asmalash T, Gebrekidan A et al. Nano-medicine as a newly emerging approach to combat human immunodeficiency virus (HIV). Pharm. Nanotechnol. 06, 17–27 (2018).
    • 17. Magne TM, de Oliveira Vieira T, Alencar LMR et al. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J. Nanostructure Chem. 12(5), 693–727 (2022).
    • 18. de Castro KC, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: a review. Int. J. Polym. Mater. 71, 1–13 (2020).
    • 19. Bhattacharjee S. Polymeric nanoparticles. In: Principles of Nanomedicine. Bhattacharjee S (Ed.). Jenny Stanford Publishing, NY, USA, 195–240 (2019).
    • 20. Sadaquat H, Akhtar M, Nazir M, Ahmad R, Alvi Z, Akhtar N. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: in vivo toxicity evaluation. Int. J. Pharm. 598, 120363 (2021).
    • 21. Lin K, Kasko AM. Carbohydrate-based polymers for immune modulation. ACS Macro. Lett. 3, 652–657 (2014).
    • 22. Eshaghi B, Alsharif N, An X et al. Stiffness of HIV-1 mimicking polymer nanoparticles modulates ganglioside-mediated cellular uptake and trafficking. Adv. Sci. 7(18), 2000649 (2020).
    • 23. Eshaghi B, Fofana J, Nodder SB, Gummuluru S, Reinhard BM. Virus-mimicking polymer nanoparticles targeting CD169+ macrophages as long-acting nanocarriers for combination antiretrovirals. ACS Appl. Mater. Interfaces 14(2), 2488–2500 (2022).
    • 24. Golshan M, Rostami-Tapeh-Esmail E, Salami-Kalajahi M, Roghani-Mamaqani H. A review on synthesis, photophysical properties, and applications of dendrimers with perylene core. Eur. Polym. J. 137, 109933 (2020).
    • 25. Akbarzadeh A, Khalilov R, Mostafavi E et al. Role of dendrimers in advanced drug delivery and biomedical applications: a review. Exp. Oncol. 40(3), 178–183 (2018).
    • 26. Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: recent progress and advances. Biomaterials 280, 121303 (2022).
    • 27. Relaño-Rodríguez I, Juárez-Sánchez R, Pavicic C, Muñoz E, Muñoz-Fernández MÁ. Polyanionic carbosilane dendrimers as a new adjuvant in combination with latency reversal agents for HIV treatment. J. Nanobiotechnol. 17(1), 1–8 (2013).
    • 28. Kharwade R, More S, Suresh E, Warokar A, Mahajan N, Mahajan U. Improvement in bioavailability and pharmacokinetic characteristics of efavirenz with booster dose of ritonavir in PEGylated PAMAM G4 dendrimers. AAPS PharmSciTech 23(6), 177 (2022).
    • 29. Rodríguez-Izquierdo I, Natalia C, García F, de Los Angeles Munoz-Fernandez M. G2-S16 sulfonate dendrimer as new therapy for treatment failure in HIV-1 entry inhibitors. Nanomedicine (Lond). 14(9), 1095–1107 (2019). https://doi.org/10.2217/nnm-2018-0364
    • 30. Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6(8), 427–436 (2001).
    • 31. Alibolandi M, Hoseini F, Mohammadi M et al. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int. J. Pharm. 549(1), 67–75 (2018).
    • 32. Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered fluorescent carbon dots and G4-G6 PAMAM dendrimer nanohybrids for bioimaging and gene delivery. Biomacromolecules 22(6), 2436–2450 (2021).
    • 33. Akilesh MS, Wadhwani A. Novel applications of nanotechnology in controlling HIV and HSV infections. Curr. Drug Res. Rev. 13(2), 120–129 (2021).
    • 34. Rolando Alberto RF, Martiniano B, Saúl RH et al. In silico and in vivo studies of gp120-HIV-derived peptides in complex with G4-PAMAM dendrimers. RSC Adv. 10(35), 20414–20426 (2020).
    • 35. Rodríguez-Fonseca RA, Bello M, de los Muñoz-Fernández MÁ et al. In silico search, chemical characterization and immunogenic evaluation of amino-terminated G4-PAMAM-HIV peptide complexes using three-dimensional models of the HIV-1 gp120 protein. Colloids Surf. B Biointerfaces 177, 77–93 (2019).
    • 36. Kumar PD, Kumar PV, Anneer Selvam TP, Rao KS. Prolonged drug delivery system of PEGylated PAMAM dendrimers with a anti-HIV drug. Res. Pharm. 3(2), 8–17 (2013). • This article showed that dendrimer nanoparticles surface modification with PEG could reduce the toxicity of nanoparticles in HIV therapy.
    • 37. Zhou J, Neff CP, Liu X et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol. Ther. 19(12), 2228–2238 (2011).
    • 38. Agashe HB, Dutta T, Garg M, Jain NK. Investigations on the toxicological profile of functionalized fifth-generation poly(propylene imine) dendrimer. J. Pharm. Pharmacol. 58(11), 1491–1498 (2010).
    • 39. Idris AO, Mamba B, Feleni U. Poly(propylene imine) dendrimer: a potential nanomaterial for electrochemical application. Mater. Chem. Phys. 244, 122641 (2020).
    • 40. Drzewińska J, Appelhans D, Voit B, Bryszewska M, Klajnert B. Poly(propylene imine) dendrimers modified with maltose or maltotriose protect phosphorothioate oligodeoxynucleotides against nuclease activity. Biochem. Biophys. Res. Commun. 427(1), 197–201 (2012).
    • 41. Pedziwiatr-Werbicka E, Ferenc M, Zaborski M, Gabara B, Klajnert B, Bryszewska M. Characterization of complexes formed by polypropylene imine dendrimers and anti-HIV oligonucleotides. Colloids Surf. B Biointerfaces 83(2), 360–366 (2011).
    • 42. Maly J, Pedziwiatr-Werbicka E, Maly M et al. Highly organized self-assembled dendriplexes based on poly(propylene imine) glycodendrimer and anti-HIV oligodeoxynucleotides. Curr. Med. Chem. 19(27), 4708–4719 (2012).
    • 43. John SV, Rotherham LS, Khati M, Mamba BB, Arotiba OA. Towards HIV detection: novel poly(propylene imine) dendrimer-streptavidin platform for electrochemical DNA and gp120 aptamer biosensors. Int. J. Electrochem. Sci. 9(10), 5425–5437 (2014).
    • 44. Khan T, Mayuresh Patkar M, Momin M, Omri A. Macrophage targeted nanocarrier delivery systems in HIV therapeutics. Expert Opin. Drug Deliv. 17(7), 903–918 (2020).
    • 45. Saurabh S, Sahoo AK, Maiti PK. Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor. J. Phys. Conf. Ser. 759(1), 012020 (2016).
    • 46. Rodríguez-Izquierdo I, Natalia C, García F, de los Ángeles Muñoz-Fernandez M. G2-S16 sulfonate dendrimer as new therapy for treatment failure in HIV-1 entry inhibitors. Nanomedicine 14(9), 1095–1107 (2019).
    • 47. MacIel D, Guerrero-Beltrán C, Ceña-Diez R, Tomás H, Muñoz-Fernández MÁ, Rodrigues J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 11(19), 9679–9690 (2019).
    • 48. Tyssen D, Henderson SA, Johnson A et al. Structure activity relationship of dendrimer microbicides with dual action antiviral activity. PLOS ONE 5(8), e12309 (2010).
    • 49. Bon I, Lembo D, Rusnati M et al. Peptide-derivatized SB105-A10 dendrimer inhibits the infectivity of R5 and X4 HIV-1 strains in primary PBMCs and cervicovaginal histocultures. PLOS ONE 8(10), 1–13 (2013).
    • 50. Relaño-Rodríguez I, Juárez-Sánchez R, Pavicic C, Muñoz E, Muñoz-Fernández MÁ. Polyanionic carbosilane dendrimers as a new adjuvant in combination with latency reversal agents for HIV treatment. J. Nanobiotechnol. 17(1), 1–8 (2019).
    • 51. Briz V, Sepúlveda-Crespo D, Diniz AR et al. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides. Nanoscale 7(35), 14669–14683 (2015).
    • 52. Guerrero-Beltran C, Rodriguez-Izquierdo I, Serramia MJ et al. Anionic carbosilane dendrimers destabilize the GP120-CD4 complex blocking HIV-1 entry and cell to cell fusion. Bioconjug. Chem. 29(5), 1584–1594 (2018).
    • 53. Vacas-Córdoba E, Maly M, De la Mata FJ, Gómez R, Pion M, Muñoz-Fernández MÁ. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-I. Int. J. Nanomed. 11, 1281–1294 (2016).
    • 54. Alfei S, Catena S, Ponassi M, Rosano C, Zoppi V, Spallarossa A. Hydrophilic and amphiphilic water-soluble dendrimer prodrugs suitable for parenteral administration of a non-soluble non-nucleoside HIV-1 reverse transcriptase inhibitor thiocarbamate derivative. Eur. J. Pharm. Sci. 124, 153–164 (2018).
    • 55. Pargoo EM, Aghasadeghi MR, Parivar K, Nikbin M, Rahimi P, Ardestani MS. Lamivudine-conjugated and efavirenz-loaded G2 dendrimers: novel anti-retroviral nano drug delivery systems. IET Nanobiotechnol. 15(7), 627–637 (2021).
    • 56. Clayton R, Hardman J, Labranche CC, McReynolds KD. Evaluation of the synthesis of sialic acid-PAMAM glycodendrimers without the use of sugar protecting groups, and the anti-HIV-1 properties of these compounds. Bioconjug. Chem. 22(10), 2186–2197 (2011).
    • 57. Zhou J, Neff CP, Liu X et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol. Ther. 19(12), 2228–2238 (2011).
    • 58. Telwatte S, Moore K, Johnson A et al. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antiviral Res. 90(3), 195–199 (2011).
    • 59. Yemul O, Imae T. Synthesis and characterization of poly(ethyleneimine) dendrimers. Colloid Polym. Sci. 286(6–7), 747–752 (2008).
    • 60. Zakeri A, Kouhbanani MAJ, Beheshtkhoo N et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev. Exp. 9(1), 1488497 (2018).
    • 61. Lu Y, Wu F, Duan W et al. Engineering a “PEG-g-PEI/DNA nanoparticle-in- PLGA microsphere” hybrid controlled release system to enhance immunogenicity of DNA vaccine. Mater. Sci. Eng. C 106, 110294 (2020).
    • 62. Chen Y, Huang Y, Huang H et al. Farnesylthiosalicylic acid-derivatized PEI-based nanocomplex for improved tumor vaccination. Mol. Ther. Nucleic Acids 26, 594–602 (2021).
    • 63. Hauptmann N, Pion M, Muñoz-Fernández MÁ et al. Ni(II)-NTA modified poly(ethylene imine) glycopolymers: physicochemical properties and first in vitro study of polyplexes formed with HIV-derived peptides. Macromol. Biosci. 13(5), 531–538 (2013).
    • 64. Li M, Jiang Y, Xu C, Zhang Z, Sun X. Enhanced immune response against HIV-1 induced by a heterologous DNA prime-adenovirus boost vaccination using mannosylated polyethyleneimine as DNA vaccine adjuvant. Int. J. Nanomed. 8, 1843–1854 (2013).
    • 65. Rodriguez M, Lapierre J, Ojha CR et al. Intranasal drug delivery of small interfering RNA targeting beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci. Rep. 7(1), 1–10 (2017).
    • 66. Hu J, Wen CY, Zhang ZL et al. Optically encoded multifunctional nanospheres for one-pot separation and detection of multiplex DNA sequences. Anal. Chem. 85(24), 11929–11935 (2013).
    • 67. Vinogradov SV, Poluektova LY, Makarov E, Gerson T, Senanayake MT. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir. Chem. Chemother. 21(1), 1–14 (2010).
    • 68. Weber ND, Merkel OM, Kissel T, Muñoz-Fernández MÁ. PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro. J. Control. Rel. 157(1), 55–63 (2012).
    • 69. Mamo T, Moseman EA, Kolishetti N et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 5(2), 269–285 (2010).
    • 70. Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17(3), 247–289 (2006).
    • 71. Yang H, Li J, Patel SK, Palmer KE, Devlin B, Rohan LC. Design of poly(lactic-co-glycolic acid) (plga) nanoparticles for vaginal co-delivery of griffthsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics 11(4), 1–21 (2019).
    • 72. Mandal S, Prathipati PK, Kang G et al. Tenofovir alafenamide and elvitegravir loaded nanoparticles for long-acting prevention of HIV-1 vaginal transmission. AIDS 31(4), 469 (2017). • This article proved the long-acting mechanism of poly(lactic-co-glycolic acid) polymeric nanoparticles, their long circulation time and low blood clearance.
    • 73. Jiang Y, Cao S, Bright DK et al. Nanoparticle-based ARV drug combinations for synergistic inhibition of cell-free and cell-cell HIV transmission. Mol. Pharm. 12(12), 4363–4374 (2015).
    • 74. Choi S, Lee J, Kumar P, Lee KY, Lee SK. Single chain variable fragment CD7 antibody conjugated PLGA/HDAC inhibitor immuno-nanoparticles: developing human T cell-specific nano-technology for delivery of therapeutic drugs targeting latent HIV. J. Control. Rel. 152(Suppl. 1), e9–10 (2011).
    • 75. Gong Y, Chowdhury P, Midde NM, Rahman MA, Yallapu MM, Kumar S. Novel elvitegravir nanoformulation approach to suppress the viral load in HIV-infected macrophages. Biochem. Biophys. Rep. 12, 214–219 (2017).
    • 76. Ariza-Sáenz M, Espina M, Bolaños N et al. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model. Eur. J. Pharm. Biopharm. 120, 98–106 (2017).
    • 77. Shibata A, McMullen E, Pham A et al. Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Res. Hum. Retroviruses 29(5), 746–754 (2013).
    • 78. Destache CJ, Belgum T, Goede M, Shibata A, Belshan MA. Antiretroviral release from poly (DL-lactide-co-glycolide) nanoparticles in mice. J. Antimicrob. Chemother. 65(10), 2183–2187 (2010).
    • 79. Nunes R, Araújo F, Barreiros L et al. Noncovalent PEG coating of nanoparticle drug carriers improves the local pharmacokinetics of rectal anti-HIV microbicides. ACS Appl. Mater. Interfaces 10(41), 34942–34953 (2018).
    • 80. Dev A, Binulal NS, Anitha A et al. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr. Polym. 80(3), 833–838 (2010).
    • 81. Dahmane EM, Rhazi M, Taourirte M. Chitosan nanoparticles as a new delivery system for the anti-HIV drug zidovudine. Bull. Korean Chem. Soc. 34(5), 1333–1338 (2013).
    • 82. Afshari R, Mazinani S, Abdouss M. Nanohybrid nanoparticles based on chitosan/functionalized carbon nanotubes as anti-HIV nanocarrier. Nano 10(1), 1–12 (2015).
    • 83. Priya Dharshini K, Fang H, Ramya Devi D et al. pH-sensitive chitosan nanoparticles loaded with dolutegravir as milk and food admixture for paediatric anti-HIV therapy. Carbohydr. Polym. 256, 117440 (2021).
    • 84. Meng J, Sturgis TF, Youan BBC. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur. J. Pharm. Sci. 44(1–2), 57–67 (2011).
    • 85. Iranpur Mobarakeh V, Modarressi MH, Rahimi P et al. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. Int. J. Biol. Macromol. 129, 305–315 (2019).
    • 86. Makita-Chingombe F, Kutscher HL, DiTursi SL, Morse GD, Maponga CC. Poly(lactic-co-glycolic) acid-chitosan dual loaded nanoparticles for antiretroviral nanoformulations. J. Drug Deliv. 2016, 1–10 (2016).
    • 87. Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. Evaluation of chitosan nanoformulations as potent anti-HIV therapeutic systems. Biochim. Biophys. Acta Gen. Subj. 1840(1), 476–484 (2014).
    • 88. Yang L, Chen L, Zeng R et al. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorg. Med. Chem. 18(1), 117–123 (2010).
    • 89. Alamdaran M, Movahedi B, Mohabatkar H, Behbahani M. In-vitro study of the novel nanocarrier of chitosan-based nanoparticles conjugated HIV-1 P24 protein-derived peptides. J. Mol. Liq. 265(2017), 243–250 (2018).
    • 90. Wu D, Ensinas A, Verrier B et al. Zinc-stabilized chitosan-chondroitin sulfate nanocomplexes for HIV-1 infection inhibition application. Mol. Pharm. 13(9), 3279–3291 (2016).
    • 91. Suner SS, Sahiner M, Sengel SB, Rees DJ, Reed WF, Sahiner N. Responsive biopolymer-based microgels/nanogels for drug delivery applications. In: Woodhead Publishing Series in Biomaterials. Makhlouf ASHAbu-Thabit NYBT (Eds). Woodhead Publishing, Sawston, UK, 453–500 (2018).
    • 92. Zhang E, Xing R, Liu S, Qin Y, Li K, Li P. Advances in chitosan-based nanoparticles for oncotherapy. Carbohydr. Polym. 222, 115004 (2019).
    • 93. Afshari R, Mazinani S, Abdouss M. Nanohybrid nanoparticles based on chitosan/functionalized carbon nanotubes as anti-HIV nanocarrier. Nano 10(1), 1–12 (2015).
    • 94. Gu J, Al-Bayati K, Ho EA. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood–brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv. Transl. Res. 7(4), 497–506 (2017).
    • 95. Yang L, Chen L, Zeng R et al. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorg. Med. Chem. 18(1), 117–123 (2010).
    • 96. Karimifard S, Rezaei N, Jamshidifar E et al. pH-responsive chitosan-adorned niosome nanocarriers for co-delivery of drugs for breast cancer therapy. ACS Appl. Nano Mater. 5(7), 8811–8825 (2022).
    • 97. Barenholz Y. Doxil®–the first FDA-approved nano-drug: lessons learned. J. Control. Rel. 160(2), 117–134 (2012).
    • 98. Gagliardi A, Giuliano E, Venkateswararao E et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 12, 17 (2021).
    • 99. Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: preparation, characterization and in vitro cytotoxic evaluation. Mater. Sci. Eng. C 73, 406–416 (2017).
    • 100. Tomitaka A, Arami H, Huang Z et al. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale 10(1), 184–194 (2018).
    • 101. Zhao Y, Sun H, Li X, Mo X, Zhang G. Anti-HIV effect of liposomes bearing CXCR4 receptor antagonist N15P. Trop. J. Pharm. Res. 12(4), 503–509 (2013).
    • 102. Wang L, Sassi AB, Patton D et al. Development of a liposome microbicide formulation for vaginal delivery of octylglycerol for HIV prevention. Drug Dev. Ind. Pharm. 38, 995–1007 (2012).
    • 103. Bronshtein T, Toledano N, Danino D, Pollack S, Machluf M. Cell derived liposomes expressing CCR5 as a new targeted drug-delivery system for HIV infected cells. J. Control. Rel. 151(2), 139–148 (2011).
    • 104. Yadavar-Nikravesh M-S, Ahmadi S, Milani A et al. Construction and characterization of a novel tenofovir-loaded PEGylated niosome conjugated with TAT peptide for evaluation of its cytotoxicity and anti-HIV effects. Adv. Powder Technol. 32(9), 3161–3173 (2021).
    • 105. Singh Chauhan P, Abutbul Ionita I, Moshe Halamish H, Sosnik A, Danino D. Multidomain drug delivery systems of β-casein micelles for the local oral co-administration of antiretroviral combinations. J. Colloid Interface Sci. 592, 156–166 (2021). • Authors studied a combination of different anti-HIV drugs in micelles and precisely assessed its mechanisms. They developed a flexible and modular technology platform for the oral delivery of fixed-dose combinations.
    • 106. Witika BA, Smith VJ, Walker RB. Top-down synthesis of a lamivudine-zidovudine nano co-crystal. Crystals 11(1), 33 (2021).
    • 107. Kim H, Zhang W, Hwang J et al. Carrier-free micellar CpG interacting with cell membrane for enhanced immunological treatment of HIV-1. Biomaterials 277, 121081 (2021).
    • 108. Rojekar S, Pai R, Abadi LF et al. Dual loaded nanostructured lipid carrier of nano-selenium and Etravirine as a potential anti-HIV therapy. Int. J. Pharm. 607, 120986 (2021).
    • 109. Zhuang J, Han B, Liu W et al. Liposome-amplified photoelectrochemical immunoassay for highly sensitive monitoring of disease biomarkers based on a split-type strategy. Adv. Biosens. Bioelectron. 99, 230–236 (2017).
    • 110. Damhorst GL, Smith CE, Salm EM. A liposome-based ion release impedance sensor for biological detection. Biomed. Microdevices 15(5), 895–905 (2013).
    • 111. Tomitaka A, Arami H, Huang Z et al. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale 10(1), 184–194 (2018).
    • 112. Bhattacharya S, Saindane D, Prajapati BG. Liposomal drug delivery and its potential impact on cancer research. Anticancer Agents Med. Chem. 22(15), 2671–2683 (2022).
    • 113. Melidis L, Styles IB, Hannon MJ. Targeting structural features of viral genomes with a nano-sized supramolecular drug. Chem. Sci. 12(20), 7174–7184 (2021).
    • 114. Khorsandi Z, Metkazini SFM, Heydari A, Varma RS. Visible light-driven direct synthesis of ketones from aldehydes via CH bond activation using NiCu nanoparticles adorned on carbon nano onions. Mol. Catal. 516, 111987 (2021).
    • 115. Peterhoff D, Thalhauser S, Sobczak JM et al. Augmenting the immune response against a stabilized HIV-1 clade C envelope trimer by silica nanoparticle delivery. Vaccines (Basel) 9(6), 642 (2021).
    • 116. Jayant RD, Atluri VSR, Tiwari S et al. Novel nanoformulation to mitigate co-effects of drugs of abuse and HIV-1 infection: towards the treatment of NeuroAIDS. J. Neurovirol. 23(4), 603–614 (2017).
    • 117. Mostafavi E, Zarepour A, Barabadi H, Zarrabi A, Truong LB, Medina-Cruz D. Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: beginning a new era in cancer theragnostic. Biotechnol. Rep. 34, e00714 (2022).
    • 118. Jahangiri-Manesh A, Mousazadeh M, Taji S et al. Gold nanorods for drug and gene delivery: an overview of recent advancements. Pharmaceutics 14(3), 664 (2022).
    • 119. Gulati S, Singh P, Diwan A, Mongia A, Kumar S. Functionalized gold nanoparticles: promising and efficient diagnostic and therapeutic tools for HIV/AIDS. RSC Med. Chem. 11(11), 1252–1266 (2020).
    • 120. Barabadi H, Webster TJ, Vahidi H et al. Green nanotechnology-based gold nanomaterials for hepatic cancer therapeutics: a systematic review. Iran. J. Pharm. Res. 19(3), 3–17 (2020).
    • 121. Aalinkeel R, Mangum CS, Abou-Jaoude E et al. Galectin-1 reduces neuroinflammation via modulation of nitric oxide-arginase signaling in HIV-1 transfected microglia: a gold nanoparticle-galectin-1 “nanoplex” a possible neurotherapeutic? J. Neuroimmune Pharmacol. 12(1), 133–151 (2017).
    • 122. Bowman M-C, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C. Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc. 130(22), 6896–6897 (2008).
    • 123. Garrido C, Carrie A, Dahl NP et al. Gold nanoparticles to improve HIV drug delivery. Future Med. Chem. 7, 1097–1107 (2015).
    • 124. Mostafavi E, Medina-Cruz D, Vernet-Crua A et al. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin. Drug Deliv. 18(6), 715–736 (2021).
    • 125. Hameed S, Rehman S. Nanotechnology for Infectious Diseases. Springer, NY, USA (2022).
    • 126. Kesarkar R, Oza G, Pandey S et al. Gold nanoparticles: effective as both entry inhibitors and virus neutralizing agents against HIV. J. Microbiol. Biotech. Res. 2(2), 276–283 (2012).
    • 127. Tenforde MW, Shapiro AE, Rouse B et al. Treatment for HIV-associated cryptococcal meningitis. Cochrane Database Syst. Rev. 2018(7), CD005647 (2018).
    • 128. Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. Development and evaluation of peptide-functionalized gold nanoparticles for HIV integrase inhibition. Int. J. Pept. Res. Ther. 25(1), 311–322 (2019).
    • 129. Chiodo F, Marradi M, Calvo J, Yuste E, Penadés S. Glycosystems in nanotechnology: gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J. Org. Chem. 10, 1339–1346 (2014).
    • 130. Peña-González CE, García-Broncano P, Ottaviani MF et al. Dendronized anionic gold nanoparticles: synthesis, characterization, and antiviral activity. Chemistry 22(9), 2987–2999 (2016).
    • 131. Chiodo F, Enríquez-Navas PM, Angulo J, Marradi M, Penadés S. Assembling different antennas of the gp120 high mannose-type glycans on gold nanoparticles provides superior binding to the anti-HIV antibody 2G12 than the individual antennas. Carbohydr. Res. 405, 102–109 (2015).
    • 132. Res JMB, Kesarkar R, Oza G et al. Gold nanoparticles: effective as both entry inhibitors and virus neutralizing agents against HIV. Jmbronline Com. 2(2), 276–283 (2012).
    • 133. Sanna V, Youssef MF, Pala N et al. Inhibition of human immunodeficiency virus-1 integrase by β-diketo acid coated gold nanoparticles. ACS Med. Chem. Lett. 11(5), 857–861 (2020).
    • 134. Shiang YC, Ou CM, Chen SJ et al. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. Nanoscale 5(7), 2756–2764 (2013).
    • 135. Malik T, Chauhan G, Rath G, Kesarkar RN, Chowdhary AS, Goyal AK. Efaverinz and nano-gold-loaded mannosylated niosomes: a host cell-targeted topical HIV-1 prophylaxis via thermogel system. Artif. Cells Nanomed. Biotechnol. 46(Suppl. 1), 79–90 (2018).
    • 136. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 8(1), 1–10 (2010). •• Elucidates the mode of antiviral action of silver nanoparticles against HIV-1 using a panel of different in vitro assays. Few studies are available in this area.
    • 137. Lara HH, Ixtepan-Turrent L, Garza Treviño EN, Singh DK. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. J. Nanobiotechnol. 9(1), 38 (2011).
    • 138. Elechiguerra JL, Burt JL, Morones JR et al. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3(1), 1–10 (2005).
    • 139. Malik T, Chauhan G, Rath G, Murthy RSR, Goyal AK. “Fusion and binding inhibition” key target for HIV-1 treatment and pre-exposure prophylaxis: targets, drug delivery and nanotechnology approaches. Drug Deliv. 24(1), 608–621 (2017).
    • 140. Dunn K, Edwards-Jones V. The role of Acticoat™ with nanocrystalline silver in the management of burns. Burns 30, S1–S9 (2004).
    • 141. Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical applications of functionalized gold nanoparticles: a review. J. Clust. Sci. 33(1), 1–16 (2022).
    • 142. Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci. Eng. C 112, 110924 (2020).
    • 143. HIVinfo.NIH.gov. FDA-approved HIV medicines (2023). https://hivinfo.nih.gov/understanding-hiv/fact-sheets/fda-approved-hiv-medicines
    • 144. Gonçalves PH, Uldrick TS, Yarchoan R. HIV-associated Kaposi sarcoma and related diseases. AIDS 31(14), 1903 (2017).
    • 145. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4(3), e10143 (2019). •• Comprehensive review of the history, current clinical landscape and clinical challenges of nanoparticle delivery systems.
    • 146. Ruschel MAP, Thapa B. Cryptococcal meningitis. StatPearls Publishing, FL, USA (2022). www.ncbi.nlm.nih.gov/books/NBK525986/
    • 147. European Commission. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious. European Commission, Strasbourg, France (2006). https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf
    • 148. Surnar B, Shah AS, Park M et al. Brain-accumulating nanoparticles for assisting astrocytes to reduce human immunodeficiency virus and drug abuse-induced neuroinflammation and oxidative stress. ACS Nano 15(10), 15741–15753 (2021).
    • 149. Davarani Asl F, Mousazadeh M, Azimzadeh M, Ghaani MR. Mesoporous selenium nanoparticles for therapeutic goals: a review. J. Nanopart. Res. 24(10), 1–14 (2022).
    • 150. Kumar L, Verma S, Prasad DN et al. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif. Cells Nanomed. Biotechnol. 43(2), 71–86 (2015).
    • 151. Laufer D. A phase 1 study to evaluate the safety and immunogenicity of eOD-GT8 60mer mRNA vaccine (mRNA-1644) and Core-g28v2 60mer mRNA vaccine (mRNA-1644v2-Core) (2021). https://clinicaltrials.gov/ct2/show/NCT05001373?term=mrna+vaccine&cond=Human+Immunodeficiency+Virus&draw=2&rank=1
    • 152. van’t Klooster G, Hoeben E, Borghys H et al. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob. Agents Chemother. 54(5), 2042–2050 (2010).
    • 153. Kraft JC, Mcconnachie LA, Koehn J et al. Long-acting combination anti-HIV drug suspension enhances and sustains higher drug levels in lymph node cells than in blood cells and plasma. AIDS 31(6), 765–770 (2017).
    • 154. Mandal S, Kang G, Prathipati PK, Fan W, Li Q, Destache CJ. Long-acting parenteral combination antiretroviral loaded nano-drug delivery system to treat chronic HIV-1 infection: a humanized mouse model study. Antiviral Res. 156, 85–91 (2018).
    • 155. ClinicalTrials.gov. Study to evaluate the efficacy, safety, and tolerability of long-acting intramuscular cabotegravir and rilpivirine for maintenance of virologic suppression following switch from an integrase inhibitor in HIV-1 infected therapy naive participants (2023). https://beta.clinicaltrials.gov/study/NCT02938520