We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Cholesterol enhances the negative impact of vaping additives on lung surfactant model systems

    Nicolas Van Bavel

    Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada

    ,
    Patrick Lai

    Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada

    Current address: Rane Pharmaceuticals, Edmonton, AB, T6E 5V2, Canada

    ,
    Raimar Loebenberg

    Department of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E3, Canada

    &
    Elmar J Prenner

    *Author for correspondence:

    E-mail Address: eprenner@ucalgary.ca

    Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada

    Published Online:https://doi.org/10.2217/nnm-2022-0232

    Aims: Vaping has given rise to e-cigarette or vaping product use-associated lung injury. Model lung surfactant films were used to assess the impact of vape additives (vitamin E, vitamin E acetate, tetrahydrocannabinol, cannabidiol). This work builds upon our previous findings, by incorporating cholesterol, to understand the interplay between the additives and the sterol in surfactant function. Materials & methods: Compression–expansion cycles of lipid monofilm at the air–water interface and Brewster angle microscopy allowed elucidating the effects of vape additives. Results & conclusion: Vape additives at 5 mol% inhibited proper lipid packing and reduced film stability. Cholesterol enhanced the additive effects, resulting in significantly destabilized films and altered domains. The observed impact could signify dysfunctional lung surfactant and impaired lung function.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. CDC. Outbreak of lung injury associated with the use of e-cigarette, or vaping, products (2020). www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html
    • 2. Blount BC, Karwowski MP, Shields PG et al. Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N. Engl. J. Med. 382(8), 697–705 (2020). •• Summarizes the health issues of e-cigarette or vaping use-associated lung injury and identifies potential causes.
    • 3. Christiani DC. Vaping-induced acute lung injury. N. Engl. J. Med. 382(10), 960–962 (2020).
    • 4. Dicpinigaitis PV, Trachuk P, Fakier F, Teka M, Suhrland MJ. Vaping-associated acute respiratory failure due to acute lipoid pneumonia. Lung 198(1), 31–33 (2020).
    • 5. Rugonyi S, Biswas SC, Hall SB. The biophysical function of pulmonary surfactant. Respir. Physiol. Neurobiol. 163(1–3), 244–255 (2008). •• One of the key papers explaining the biophysical role of lung surfactant.
    • 6. Lopez-Rodriguez E, Pérez-Gil J. Structure–function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim. Biophys. Acta Biomembr. 1838(6), 1568–1585 (2014).
    • 7. Van Bavel N, Lai P, Lobenberg R, Prenner EJ. Vaping additives negatively impact the stability and lateral film organization of lung surfactant model systems. Nanomedicine 17(12), 827–843 (2022). •• Investigates the detrimental effects of vaping additives on model lung surfactant films.
    • 8. Lee J, Yang S, Kiessling V, Tamm LK. The role of cholesterol in viral spike glycoprotein-mediated membrane fusion. Biophys. J. 112(3), 9a (2017).
    • 9. Zhang X, Barraza KM, Beauchamp JL. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air–water interface. Proc. Natl Acad. Sci. USA 115(13), 3255–3260 (2018).
    • 10. De La Serna JB, Perez-Gil J, Simonsen AC, Bagatolli LA. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 279(39), 40715–40722 (2004).
    • 11. Bangham AD, Morley CJ, Phillips MC. The physical properties of an effective lung surfactant. Biochim. Biophys. Acta Lipids Lipid Metab. 573, 552–556 (1979).
    • 12. Schürch S, Green FHY, Bachofen H. Formation and structure of surface films: captive bubble surfactometry. Biochim. Biophys. Acta Mol. Basis Dis. 1408(2–3), 180–202 (1998).
    • 13. Keating E, Rahman L, Francis J et al. Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant. 93(4), 1391–1401 (2007).
    • 14. Yu SH, Possmayer F. Adsorption, compression and stability of surface films from natural, lipid extract and reconstituted pulmonary surfactants. Biochim. Biophys. Acta Lipids Lipid Metab. 1167(3), 264–271 (1993).
    • 15. Gunasekara L, Schürch S, Schoel WM et al. Pulmonary surfactant function is abolished by an elevated proportion of cholesterol. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1737(1), 27–35 (2005).
    • 16. Leonenko Z, Finot E, Vassiliev V, Amrein M. Effect of cholesterol on the physical properties of pulmonary surfactant films: atomic force measurements study. Ultramicroscopy 106(8–9), 687–694 (2006).
    • 17. Leonenko Z, Gill S, Baoukina S et al. An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film. Biophys. J. 93(2), 674–683 (2007). •• Provides a biophysical basis for the action of surfactant folding and harmful consequences of excess cholesterol.
    • 18. Mavromoustakos T, Daliani I. Effects of cannabinoids in membrane bilayers containing cholesterol. Biochim. Biophys. Acta Biomembr. 1420(1–2), 252–265 (1999). • Highlights key interactions of cannabinoids with lipids and the elevated effect they have on membrane fluidity in the presence of cholesterol.
    • 19. Bernhard W, Haagsman HP, Tschernig T et al. Conductive airway surfactant: surface-tension function, biochemical composition, and possible alveolar origin. Am. J. Respir. Cell Mol. Biol. 17(1), 41–50 (1997).
    • 20. Gómez-Gil L, Schürch D, Goormaghtigh E, Pérez-Gil J. Pulmonary surfactant protein SP-C counteracts the deleterious effects of cholesterol on the activity of surfactant films under physiologically relevant compression–expansion dynamics. Biophys. J. 97(10), 2736–2745 (2009).
    • 21. Vollhardt D, Fainerman VB. Progress in characterization of Langmuir monolayers by consideration of compressibility. Adv. Colloid Interface Sci. 127(2), 83–97 (2006).
    • 22. Broniatowski M, Flasiński M, Dynarowicz-ŁĄtka P, Majewski J. Grazing incidence diffraction and x-ray reflectivity studies of the interactions of inorganic mercury salts with membrane lipids in Langmuir monolayers at the air/water interface. J. Phys. Chem. B 114(29), 9474–9484 (2010).
    • 23. Gröger T, Nathoo S, Ku T, Sikora C, Turner RJ, Prenner EJ. Real-time imaging of lipid domains and distinct coexisting membrane protein clusters. Chem. Phys. Lipids 165(2), 216–224 (2012).
    • 24. Nathoo S, Litzenberger JK, Bay DC, Turner RJ, Prenner EJ. Visualizing a multidrug resistance protein, EmrE, with major bacterial lipids using Brewster angle microscopy. Chem. Phys. Lipids 167–168, 33–42 (2013).
    • 25. Boudi FB, Patel S, Boudi A, Chan C. Vitamin E acetate as a plausible cause of acute vaping-related illness. Cureus 11(12), 10–14 (2019).
    • 26. Mills TT, Tristram-Nagle S, Heberle FA et al. Liquid–liquid domains in bilayers detected by wide angle x-ray scattering. Biophys. J. 95(2), 682–690 (2008).
    • 27. Keating E, Rahman L, Francis J et al. Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant. Biophys. J. 93(4), 1391–1401 (2007).
    • 28. McConlogue CW, Vanderlick TK. A close look at domain formation in DPPC monolayers. Langmuir 13(26), 7158–7164 (1997).
    • 29. US FDA. Lung injuries associated with use of vaping products (2020). www.fda.gov/news-events/public-health-focus/lung-injuries-associated-use-vaping-products
    • 30. Kamal MA, Raghunathan VA. Modulated phases of phospholipid bilayers induced by tocopherols. Biochim. Biophys. Acta Biomembr. 1818(11), 2486–2493 (2012).
    • 31. Mavromoustakos T, Theodoropoulou E, Papahatjis D. Studies on the thermotropic effects of cannabinoids on phosphatidylcholine bilayers using differential scanning calorimetry and small angle x-ray diffraction. Biochim. Biophys. Acta Lipids Lipid Metab. 1281, 235–244 (1996).
    • 32. Massey JB. Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives. Chem. Phys. Lipids 109(2), 157–174 (2001).
    • 33. Wang X, Quinn PJ. The location and function of vitamin E in membranes (review). Mol. Membr. Biol. 17(3), 143–156 (2000).
    • 34. Stillwell W, Dallman T, Dumaual AC, Crump FT, Jenski LJ. Cholesterol versus α-tocopherol: effects on properties of bilayers made from heteroacid phosphatidylcholines. Biochemistry 35(41), 13353–13362 (1996). • Compares the effects of vitamin E with cholesterol, which identifies a critical consideration in lung surfactant health.
    • 35. Bradford A, Atkinson J, Fuller N, Rand RP. The effect of vitamin E on the structure of membrane lipid assemblies. J. Lipid Res. 44(10), 1940–1945 (2003).
    • 36. Lee H. Vitamin E acetate as linactant in the pathophysiology of EVALI. Med. Hypotheses 144, 110182 (2020). •• Provides a comprehensive analysis of the potential effects of vitamin E acetate in development of e-cigarette or vaping use-associated lung injury.
    • 37. Lanzarotta A, Falconer TM, Flurer R, Wilson RA. Hydrogen bonding between tetrahydrocannabinol and vitamin E acetate in unvaped, aerosolized, and condensed aerosol e-liquids. Anal. Chem. 92(3), 2374–2378 (2020).
    • 38. Braun SR. Respiratory rate and pattern. In: Clinical Methods: The History, Physical, and Laboratory Examinations (3rd Edition). Walker HKHall WDHurst JW (Eds.), Butterworths, Boston, 226–230 (1990). Available at: www.ncbi.nlm.nih.gov/pubmed/21250206
    • 39. Casals C, Cañadas O. Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function. Biochim. Biophys. Acta Biomembr. 1818(11), 2550–2562 (2012).
    • 40. Zhang H, Wang YE, Fan Q, Zuo YY. On the low surface tension of lung surfactant. Langmuir 21(13), 8351–8358 (2011).
    • 41. Dziura M, Mansour B, Dipasquale M, Chandrasekera PC, Gauld JW, Marquardt D. Simulated breathing: application of molecular dynamics simulations to pulmonary lung surfactant. Symmetry (Basel) 13(7), 1–19 (2021).
    • 42. Amrein M, Von Nahmen A, Sieber M. A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant. Eur. Biophys. J. 26(5), 349–357 (1997).
    • 43. DiPasquale M, Nguyen MHL, Rickeard BW et al. The antioxidant vitamin E as a membrane raft modulator: tocopherols do not abolish lipid domains. Biochim. Biophys. Acta Biomembr. 1862(8), 183189 (2020).
    • 44. Yang S-T, Kiessling V, Tamm LK. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion. Nat. Commun. 7(11401), 1–9 (2016).
    • 45. Trabelsi S, Zhang S, Lee TR, Schwartz DK. Linactants: surfactant analogues in two dimensions. Phys. Rev. Lett. 100(3), 2–5 (2008).
    • 46. Panda AK, Nag K, Harbottle RR et al. Effect of acute lung injury on structure and function of pulmonary surfactant films. Am. J. Respir. Cell Mol. Biol. 30(5), 641–650 (2004).