We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanomedicine as a potential novel therapeutic approach against the dengue virus

    Tanzeel Zohra

    *Author for correspondence:

    E-mail Address: t.zohra@nih.org.pk

    Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan

    ,
    Faryal Saeed

    Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan

    ,
    Aamer Ikram

    Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan

    ,
    Tariq Khan

    Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan

    ,
    Siyab Alam

    Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan

    ,
    Muhammad Adil

    Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan

    ,
    Ayesha Gul

    Department of Chemical Engineering, Polytechnique Montreal, H3T IJ4, Canada

    ,
    Saud Almawash

    **Author for correspondence:

    E-mail Address: salmawash@su.edu.sa

    Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia

    &
    Muhammad Ayaz

    ***Author for correspondence: Tel.: +92 346 800 4990;

    E-mail Address: Ayazuop@gmail.com

    Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan

    Published Online:https://doi.org/10.2217/nnm-2022-0217

    Dengue is an arbovirus infection which is transmitted by Aedes mosquitoes. Its prompt detection and effective treatment is a global health challenge. Various nanoparticle-based vaccines have been formulated to present immunogen (antigens) to instigate an immune response or prevent virus spread, but no specific treatment has been devised. This review explores the role of nanomedicine-based therapeutic agents against dengue virus, taking into consideration the applicable dengue virus assays that are sensitive, specific, have a short turnaround time and are inexpensive. Various kinds of metallic, polymeric and lipid nanoparticles with safe and effective profiles present an alternative strategy that could provide a better remedy for eradicating the dengue virus.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Goncalvez AP, Engle RE, Claire MS, Purcell RH, Lai C-J. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc. Natl Acad. Sci. USA 104(22), 9422–9427 (2007).
    • 2. Zohra T, Khalil AT, Saeed F et al. Green nano-biotechnology: a new sustainable paradigm to control dengue infection. Bioinorg. Chem. Appl. 2022, 3994340 (2022). • Highlights the use of green nanotechnology for the management of dengue infection. The use of photosynthesized nanoparticles is reported to be effective against the vector and to be devoid of hazardous effects.
    • 3. Villabona-Arenas CJ, de Oliveira JL, de Sousa Capra C et al. Detection of four dengue serotypes suggests rise in hyperendemicity in urban centers of Brazil. PLOS Negl. Trop. Dis. 8(2), e2620 (2014). • Reports the presence of four dengue serotypes in a single outbreak, responsible for hyperendemicity in Brazilian urban areas.
    • 4. Chen Q, Li R, Wu B, Zhang X, Zhang H, Chen R. A tetravalent nanoparticle vaccine elicits a balanced and potent immune response against dengue viruses without inducing antibody-dependent enhancement. Front. Immunol. 14, 1193175 (2023). •• Modified envelope proteins from four DENV serotypes were formulated in a 24-mer ferritin nanoparticle. The tetravalent vaccine effectively induced cellular and humoral immunity in rodents without antibody-dependent enhancement of infection and offered considerable protection against the DENV-2 and DENV-3 lethal challenge.
    • 5. Brady OJ, Hay SI. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Ann. Rev. Entomol. 65, 191–208 (2020).
    • 6. Murugan K, Wei J, Alsalhi MS et al. Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol. Res. 116(2), 495–502 (2017). • Study of the efficacy of magnetic nanoparticles against chloroquine-sensitive and -resistant strains of Plasmodium falciparum, DEN-2 and other vectors. Nanoparticles exhibited toxicity against larvae and pupae with considerable potency, but in vivo efficacy was comparatively low.
    • 7. Wellekens K, Betrains A, De Munter P, Peetermans W. Dengue: current state one year before WHO 2010-2020 goals. Acta Clin. Belg. 77(2), 436–444 (2022).
    • 8. Hadinegoro S. The revised WHO dengue case classification: does the system need to be modified? Paediatr. Int. Child Health 32(Suppl. 1), 33–38 (2012).
    • 9. Ajlan BA, Alafif MM, Alawi MM, Akbar NA, Aldigs EK, Madani TA. Assessment of the new World Health Organization’s dengue classification for predicting severity of illness and level of healthcare required. PLOS Negl. Trop. Dis. 13(8), e0007144 (2019).
    • 10. Swaminathan S, Khanna N. Experimental dengue vaccines. Int. J. Infect. Dis. 135–151, https://doi.org/10.1007/978-3-7091-1419-3_7 (2013).
    • 11. World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. World Health Organization, Geneva, Switzerland (2009).
    • 12. Balmaseda A, Hammond SN, Pérez MA et al. Assessment of the World Health Organization scheme for classification of dengue severity in Nicaragua. Am. J. Trop. Med. Hyg. 73(6), 1059–1062 (2005).
    • 13. Alexander N, Balmaseda A, Coelho IC et al. Multicentre prospective study on dengue classification in four south-east Asian and three Latin American countries. Trop. Med. Int. Health 16(8), 936–948 (2011).
    • 14. Pitisuttithum P, Bouckenooghe A. The first licensed dengue vaccine: an important tool for integrated preventive strategies against dengue virus infection. Expert Rev. Vaccines 15(7), 795–798 (2016). • Reports the clinical approval of the first dengue vaccine: a recombinant live, attenuated, tetravalent dengue vaccine formulated by Sanofi Pasteur.
    • 15. Fusco D, Chung RT. Review of current dengue treatment and therapeutics in development. J. Bioanal. Biomed. 8, doi:10.4172/1948-593x.s8-002 (2014).
    • 16. Malik S, Ahsan O, Mumtaz H, Tahir Khan M, Sah R, Waheed Y. Tracing down the updates on dengue virus – molecular biology, antivirals, and vaccine strategies. Vaccines 11(8), 1328 (2023).
    • 17. Speight G, Coia G, Parker M, Westaway EG. Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. J. Gen. Virol. 69(1), 23–34 (1988).
    • 18. Jain SK. Molecular mechanism of pathogenesis of dengue virus: entry and fusion with target cell. Indian J. Clin. Biochem. 20(2), 92–103 (2005).
    • 19. Bizzarro B, Barros MS, Maciel C et al. Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology. Parasit. Vectors 6(1), 329 (2013).
    • 20. Bielefeldt-Ohmann H, Meyer M, Fitzpatrick DR, Mackenzie JS. Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains. Virus Res. 73(1), 81–89 (2001).
    • 21. Tuiskunen Bäck A, Lundkvist Å. Dengue viruses – an overview. Infect. Ecol. Epidemiol. 3(1), 19839 (2013).
    • 22. Srikiatkhachorn A, Mathew A, Rothman AL. Immune-mediated cytokine storm and its role in severe dengue. Semin. Immunopathol. 39(5), 563–574 (2017).
    • 23. Srikiatkhachorn A, Ajariyakhajorn C, Endy TP et al. Virus-induced decline in soluble vascular endothelial growth receptor 2 is associated with plasma leakage in dengue hemorrhagic fever. J. Virol. 81(4), 1592–1600 (2007).
    • 24. Gonçalves D, de Queiroz Prado R, Almeida Xavier E et al. Imunocompetent mice model for dengue virus infection. Sci. World J. 2012, 525947 (2012).
    • 25. Zheng W, Yan Q, Li Z et al. Liver transcriptomics reveals features of the host response in a mouse model of dengue virus infection. Front. Immunol. 13, 892469 (2022).
    • 26. Byrne AB, García AG, Brahamian JM et al. A murine model of dengue virus infection in suckling C57BL/6 and BALB/c mice. Animal Model Exp. Med. 4(1), 16–26 (2021).
    • 27. Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence 4, 525–536 (2013).
    • 28. Zompi S, Harris E. Animal models of dengue virus infection. Viruses 4, 62–82 (2012).
    • 29. Orozco S, Schmid MA, Parameswaran P et al. Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor. J. Gen. Virol. 93(Pt 10), 2152 (2012).
    • 30. Rasmussen SB, Reinert LS, Paludan SR. Innate recognition of intracellular pathogens: detection and activation of the first line of defense. APMIS 117(5–6), 323–337 (2009).
    • 31. Navarro-Sánchez E, Desprès P, Cedillo-Barrón L. Innate immune responses to dengue virus. Arch. Med. Res. 36(5), 425–435 (2005).
    • 32. Diamond MS, Harris E. Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289(2), 297–311 (2001).
    • 33. Aguirre S, Maestre AM, Pagni S et al. DENV inhibits type I IFN production in infected cells by cleaving human Sting. PLOS Pathol. 8(10), e1002934 (2012).
    • 34. Miesen P, Ivens A, Buck AH, Van Rij RP. Small RNA profiling in dengue virus 2-infected Aedes mosquito cells reveals viral piRNAs and novel host miRNAs. PLOS Negl. Trop. Dis. 10(2), e0004452 (2016).
    • 35. Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 364(2), 272–280 (2008).
    • 36. Swaminathan G, Thoryk EA, Cox KS et al. A tetravalent sub-unit dengue vaccine formulated with ionizable cationic lipid nanoparticle induces significant immune responses in rodents and non-human primates. Sci. Rep. 6(1), 34215 (2016).
    • 37. Nikaeen G, Abbaszadeh S, Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine 15(15), 1501–1512 (2020).
    • 38. Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front. Immunol. 14, 1200195 (2023).
    • 39. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 14, 1–16 (2012).
    • 40. Aguiar M, Stollenwerk N, Halstead SB. The impact of the newly licensed dengue vaccine in endemic countries. PLOS Negl. Trop. Dis. 10(12), e0005179 (2016). • Epidemiological study that reported the considerable protective efficacy of the CYD-TDV vaccine against dengue infections.
    • 41. Khetarpal N, Khanna I. Dengue fever: causes, complications, and vaccine strategies. J. Immunol. Res. 2016, 6803098 (2016).
    • 42. Bos S, Gadea G, Despres P. Dengue: a growing threat requiring vaccine development for disease prevention. Pathogens Global Health 112(6), 294–305 (2018).
    • 43. Thomas SJ. The necessity and quandaries of dengue vaccine development. Oxford University Press 203, 299–303 (2011).
    • 44. Halstead SB, Russell PK. Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine 34(14), 1643–1647 (2016).
    • 45. Wilder-Smith A, Smith P, Luo R et al. Pre-vaccination screening strategies for the use of the CYD-TDV dengue vaccine: a meeting report. Vaccine 37(36), 5137–5146 (2019).
    • 46. Wanyonyi MS. The Adjuvant Activity and Mechanisms of Action for Mastoparan 7 Peptide After Intranasal Immunization in Mice. Duke University (2014). https://dukespace.lib.duke.edu/dspace/handle/10161/9112
    • 47. Hou J, Ye W, Chen J. Current development and challenges of tetravalent live-attenuated dengue vaccines. Front. Immunol. 13, 840104 (2022).
    • 48. Wan S-W, Lin C-F, Wang S et al. Current progress in dengue vaccines. J. Biomed. Sci. 20(1), 37 (2013).
    • 49. Li W, Meng J, Ma X, Lin J, Lu X. Advanced materials for the delivery of vaccines for infectious diseases. Biosaf. Health 4(2), 95–104 (2022).
    • 50. Yousefpour P, Ni K, Irvine DJ. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat. Rev. Bioeng. 1(2), 107–124 (2023).
    • 51. Pan J, Cui Z. Self-assembled nanoparticles: exciting platforms for vaccination. Biotechnol. J. 15(12), 2000087 (2020).
    • 52. Osorio JE, Wallace D, Stinchcomb DT. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Rev. Vaccines 15(4), 497–508 (2016).
    • 53. Wilder-Smith A. Dengue vaccine development by the year 2020: challenges and prospects. Curr. Opin. Virol. 43, 71–78 (2020).
    • 54. McQuaid T. Sofosbuvir, a significant paradigm change in HCV treatment. J. Clin.Transl. Hepatol. 3(1), 27 (2015).
    • 55. Capeding RZ, Luna IA, Bomasang E et al. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: randomized controlled phase I trial in the Philippines. Vaccine 29(22), 3863–3872 (2011).
    • 56. ClinicalTrials.gov. Study of a novel tetravalent dengue vaccine in healthy children aged 2 to 14 years in Asia (2020). https://clinicaltrials.gov/study/NCT01373281?tab=results
    • 57. Redoni M, Yacoub S, Rivino L, Giacobbe DR, Luzzati R, Di Bella S. Dengue: status of current and under-development vaccines. Rev. Med. Virol. 30(4), e2101 (2020).
    • 58. Hou J, Ye W, Chen J et al. Current development and challenges of tetravalent live-attenuated dengue vaccines. Front. Immunol. 13, 840104 (2022).
    • 59. Capeding MR, Tran NH, Hadinegoro SRS et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384(9951), 1358–1365 (2014).
    • 60. Osorio JE, Brewoo JN, Silengo SJ et al. Efficacy of a tetravalent chimeric dengue vaccine (DENVax) in Cynomolgus macaques. Am. J. Trop. Med. Hyg. 84(6), 978 (2011).
    • 61. Biswal S, Reynales H, Saez-Llorens X et al. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N. Engl. J. Med. 381(21), 2009–2019 (2019).
    • 62. Jin B-K, Odongo S, Radwanska M, Magez S. Nanobodies: a review of generation, diagnostics and therapeutics. Int. J. Mol. Sci. 24(6), 5994 (2023).
    • 63. Poggianella M, Bernedo R, Oloketuyi S, de Marco A. Nanobodies selectively binding to the idiotype of a dengue virus neutralizing antibody do not necessarily mimic the viral epitope. Biomolecules 13(3), 551 (2023).
    • 64. Watanabe Y. Mapping the glycan shields of enveloped viruses. University of Oxford (2020). https://ora.ox.ac.uk/objects/uuid:cf7049ae-488b-466c-b1be-eee7bac2cada
    • 65. Calderón-Peláez M-A, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue virus infection of blood–brain barrier cells: consequences of severe disease. Front. Microbiol. 10, 1435 (2019).
    • 66. Biering SB, Harris E. A step towards therapeutics for dengue. Nature 598(7881), 420–421 (2021).
    • 67. Grab DJ, Sharma A, Burbulis I, Lehrer AT, Nerurkar V, Magez S. Nanobody LAMPoles: novel tools for dengue virus and Zika virus diagnosis. J. Immunol. 204(Suppl. 1), 82.24–82.24 (2020).
    • 68. Mei Y, Chen Y, Sivaccumar JP, An Z, Xia N, Luo W. Research progress and applications of nanobody in human infectious diseases. Front. Pharmacol. 13, 963978 (2022).
    • 69. Singh L, Kruger HG, Maguire GE, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 4(4), 105–131 (2017).
    • 70. Duarte JL, Di Filippo LD, Araujo VHS et al. Nanotechnology as a tool for detection and treatment of arbovirus infections. Acta Trop. 216, 105848 (2021).
    • 71. Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses. Front. Immunol. 10, 22 (2019).
    • 72. Khan HA, Ghufran M, Shams S et al. In-depth in vitro and in vivo anti-diabetic evaluations of Fagonia cretica mediated biosynthesized selenium nanoparticles. Biomed. Pharmacother. 164, 114872 (2023).
    • 73. Mohamed HEA, Khalil AT, Hkiri K et al. Structural, vibrational, optical and anticancer properties of Hyphaene thebaica reduced nano lanthanum oxide (La2O3). Appl. Organomet. Chem. 37(6), e7091 (2023).
    • 74. Sher A, Khalil AT, Dogan N, Ayaz M, Ahmad K. Valorization and repurposing of Citrus limetta fruit waste for fabrication of multifunctional AgNPs and their diverse nanomedicinal applications. Appl. Biochem. Biotechnol. doi:10.1007/s12010-023-04646-z (2023) (Epub ahead of print).
    • 75. Ankamwar B. Size and shape effect on biomedical applications of nanomaterials. Biomed. Engineer. Tech. App. Med. 93–114, http://dx.doi.org/10.5772/46121 (2012).
    • 76. Maugi R, Hauer P, Bowen J, Ashman E, Hunsicker E, Platt M. A methodology for characterising nanoparticle size and shape using nanopores. Nanoscale 12(1), 262–270 (2020).
    • 77. Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial nano-factories: synthesis and biomedical applications. Front. Chem. 9, 626834 (2021).
    • 78. Khalil AT, Iqbal J, Abbasi BA et al. Current progress on the graphene-based nanocomposites for medical, environmental and energy applications. Nanoscience 133–151, 10.1039/9781839167218-00133 (2022).
    • 79. Qasim Nasar M, Zohra T, Khalil AT et al. Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chem. Lett. Rev. 12(3), 310–322 (2019).
    • 80. Rehman H, Ali W, Ali M et al. Delpinium uncinatum mediated green synthesis of AgNPs and its antioxidant, enzyme inhibitory, cytotoxic and antimicrobial potentials. PLOS ONE 18(4), e0280553 (2023).
    • 81. Moore TL, Cook AB, Bellotti E et al. Shape-specific microfabricated particles for biomedical applications: a review. Drug Deliv. Transl. Res. 12(8), 2019–2037 (2022).
    • 82. Gomathi T, Rajeshwari K, Kanchana V, Sudha P, Parthasarathy K. Impact of nanoparticle shape, size, and properties of the sustainable nanocomposites. Sustainable Polymer Composites Nanocomposites 313–336, https://doi.org/10.1007/978-3-030-05399-4_11 (2019).
    • 83. Cheng Z, Al Zaki A, Hui JZ et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).
    • 84. Abd Ellah NH, Tawfeek HM, John J, Hetta HF. Nanomedicine as a future therapeutic approach for hepatitis C virus. Nanomedicine 14(11), 1471–1491 (2019).
    • 85. Dash SR, Kundu CN. Advances in nanomedicine for the treatment of infectious diseases caused by viruses. Biomater. Sci. 11, 3431–3449 (2023).
    • 86. Wallis J, Shenton D, Carlisle RJC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin. Exp. Immunol. 196(2), 189–204 (2019).
    • 87. Gao P, Xia G, Bao Z et al. Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery. Int. J. Bio. Macromol. 91, 716–723 (2016).
    • 88. Fahimi H, Sadeghizadeh M, Hassan ZM, Auerswald H, Schreiber M. Immunogenicity of a novel tetravalent dengue envelope protein domain III-based antigen in mice. EXCLI J. 17, 1054 (2018).
    • 89. Metz SW, Thomas A, Brackbill A et al. Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype. PLOS Negl. Trop. Dis. 12(9), e0006793 (2018).
    • 90. Versiani AF, Astigarraga RG, Rocha ES et al. Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. J. Nanobiotechnol. 15, 1–13 (2017).
    • 91. Osorio JE, Huang CY-H, Kinney RM, Stinchcomb DT. Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever. Vaccine 29(42), 7251–7260 (2011).
    • 92. Alen MM, Schols D. Dengue virus entry as target for antiviral therapy. J. Trop. Med. 2012, 628475 (2012).
    • 93. Beckett CG, Kosasih H, Faisal I et al. Early detection of dengue infections using cluster sampling around index cases. Am. J. Trop. Med. Hyg. 72(6), 777–782 (2005).
    • 94. Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD. Quantitation of flaviviruses by fluorescent focus assay. J. Virol. Methods 134(1-2), 183–189 (2006).
    • 95. Fang Y, Tambo E, Xue J-B et al. Detection of DENV-2 and insect-specific flaviviruses in mosquitoes collected from Jeddah, Saudi Arabia. Front. Cell Infect. Microbiol. 11, 52 (2021).
    • 96. Zhang B, Pinsky BA, Ananta JS et al. Diagnosis of Zika virus infection on a nanotechnology platform. Nat. Med. 23(5), 548–550 (2017).
    • 97. Carter JR, Balaraman V, Kucharski CA, Fraser TS, Fraser MJ. A novel dengue virus detection method that couples DNAzyme and gold nanoparticle approaches. Virol. J. 10(1), 1–15 (2013).
    • 98. Omar NAS, Fen YW, Abdullah J, Chik CENCE, Mahdi MA. Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. Sens. Biosens. Res. 20, 16–21 (2018).
    • 99. Hosseini S, Aeinehvand MM, Uddin SM et al. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection. Sci. Rep. 5, 16485 (2015).
    • 100. Dhal A, Kalyani T, Ghorai S, Sahu NK, Jana SK. Recent development of electrochemical immunosensor for the diagnosis of dengue virus NSI protein: a review. Sens. Int. 1, 100030 (2020).
    • 101. Balmaseda A, Saborio S, Tellez Y et al. Evaluation of immunological markers in serum, filter-paper blood spots, and saliva for dengue diagnosis and epidemiological studies. J. Clin. Virol. 43(3), 287–291 (2008).
    • 102. Antunes P, Watterson D, Parmvi M et al. Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Sci. Rep. 5, 16145 (2015).
    • 103. Yu HLL, Montesa CM, Rojas NRL, Enriquez EP. Nucleic-acid based lateral flow strip biosensor via competitive binding for possible dengue detection. J. Biosens. Bioelectron. 3(5), 128–134 (2012).
    • 104. Ding X, Hu D, Chen Y et al. Full serotype-and group-specific NS1 capture enzyme-linked immunosorbent assay for rapid differential diagnosis of dengue virus infection. Clin. Vaccine Immunol. 18(3), 430–434 (2011).
    • 105. Oliveira N, Souza E, Ferreira D et al. A sensitive and selective label-free electrochemical DNA biosensor for the detection of specific dengue virus serotype 3 sequences. Sensors 15(7), 15562–15577 (2015).
    • 106. Castro LB, Kappl M, Petri DF. Adhesion forces between hybrid colloidal particles and concanavalin A. Langmuir 22(8), 3757–3762 (2006).
    • 107. Al-Dhabi NA, Arasu MV. Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials 8(7), 500 (2018).
    • 108. Navakul K, Warakulwit C, Yenchitsomanus P-T et al. A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Biol. Med. 13(2), 549–557 (2017).
    • 109. Agasti SS, Liong M, Peterson VM, Lee H, Weissleder R. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J. Am. Chem. Soc. 134(45), 18499–18502 (2012).
    • 110. Nadiya Taha D. An electrochemical immunobiosensor for dengue virus NS1 protein detection/Nadiya Taha Darwish. University of Malaya (2016). http://studentsrepo.um.edu.my/6185/
    • 111. Singhal C, Pundir C, Narang JJB. A genosensor for detection of consensus DNA sequence of dengue virus using ZnO/Pt-Pd nanocomposites. Biosens. Bioelectron. 97, 75–82 (2017).
    • 112. Nascimento HP, Oliveira MD, de Melo CP et al. An impedimetric biosensor for detection of dengue serotype at picomolar concentration based on gold nanoparticles–polyaniline hybrid composites. Colloids Surf. B Biointerfaces 86(2), 414–419 (2011).
    • 113. Jin S-A, Poudyal S, Marinero EE, Kuhn RJ, Stanciu LA. Impedimetric dengue biosensor based on functionalized graphene oxide wrapped silica particles. Electrochim. Acta 194, 422–430 (2016).
    • 114. Suzuki K, Nakayama EE, Saito A et al. Evaluation of novel rapid detection kits for dengue virus NS1 antigen in Dhaka, Bangladesh, in 2017. Virol. J. 16(1), 1–15 (2019).
    • 115. Rai V, Hapuarachchi HC, Ng LC, Soh SH, Leo YS, Toh C-S. Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor. PLOS ONE 7(8), e42346 (2012).
    • 116. Ostromohov N, Schwartz O, Bercovici M. Focused upon hybridization: rapid and high sensitivity detection of DNA using isotachophoresis and peptide nucleic acid probes. Anal. Chem. 87(18), 9459–9466 (2015).
    • 117. Franco R, Pedrosa P, Carlos FF, Veigas B, Baptista PV. Gold nanoparticles for DNA/RNA-based diagnostics. Handbook Nanopart. 1339–1370, 10.1007/978-3-319-15338-4_31 (2015).
    • 118. Ngo HT, Wang H-N, Fales AM, Nicholson BP, Woods CW, Vo-Dinh T. DNA bioassay-on-chip using SERS detection for dengue diagnosis. Analyst 139(22), 5655–5659 (2014).
    • 119. Yen C-W, de Puig H, Tam JO et al. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip 15(7), 1638–1641 (2015).
    • 120. Abdul Rahman S, Saadun R, Azmi NE et al. Label-free dengue detection utilizing PNA/DNA hybridization based on the aggregation process of unmodified gold nanoparticles. J. Nanomater. 2014, 839286 (2014).
    • 121. Kabir MA, Zilouchian H, Younas MA, Asghar W. Dengue detection: advances in diagnostic tools from conventional technology to point of care. Biosensors 11(7), 206 (2021).
    • 122. Rozera R, Verma S, Kumar R, Haque A, Attri A. Herbal remedies, vaccines and drugs for dengue fever: emerging prevention and treatment strategies. Asian Pac. J. Trop. Med. 12(4), 147 (2019).
    • 123. Gan CS, Lim SK, Chee CF, Yusof R, Heh CH. Sofosbuvir as treatment against dengue? Chem. Biol. Drug Des. 91(2), 448–455 (2018).
    • 124. Vinayagam S, Rajaiah P, Mukherjee A, Natarajan C. DNA-triangular silver nanoparticles nanoprobe for the detection of dengue virus distinguishing serotype. Spectrochim. Acta A Mol. Biomol. Spectrosc. 202, 346–351 (2018).
    • 125. Bonfá A, Saito RS, França RF, Fonseca BA, Petri FS. Poly(ethylene glycol) decorated poly(methylmethacrylate) nanoparticles for protein adsorption. Mat. Sci. Eng. C 31, 562–566 (2011).
    • 126. Linting Z, Ruiyi L, Zaijun L, Qianfang X, Yinjun F, Junkang L. An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensors Actuators B: Chem. 174, 359–365 (2012).
    • 127. Wang Z, Ma L. Gold nanoparticle probes. Coordination Chem. Rev. 253, 1607–1618 (2009).
    • 128. Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosensors Bioelectronics 24, 2504–2508 (2009).
    • 129. Chu P-T, Lin C-S, Chen W-J, Chen C-F, Wen H-W. Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles. J. Agricultural Food Chem. 60, 6483–6492 (2012).
    • 130. Himuro T, Tsukamoto S, Saito Y. Electrical evaluation of DNA stretched and immobilized between triangular-shaped electrodes. J. Electronic Mat. 48, 1562–1567 (2019).
    • 131. Briñas RP, Maetani M, Barchi JJ Jr. A survey of place-exchange reaction for the preparation of water-soluble gold nanoparticles. J. Colloid Interface Sci. 392, 415–421 (2013).
    • 132. Kumar DR, Kumar PS, Gandhi MR, Al-Dhabi NA, Paulraj MG, Ignacimuthu S. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int. J. Bio. Macromol. 86, 89–95 (2016).
    • 133. Mansur JF, Alvarenga ES, Figueira-Mansur J et al. Effects of chitin synthase double-stranded RNA on molting and oogenesis in the chagas disease vector Rhodnius prolixus. Insect Biochem. Mol. Biol. 51, 110–121 (2014).
    • 134. Carvalho GC, Sábio RM, de Cássia Ribeiro T et al. Highlights in mesoporous silica nanoparticles as a multifunctional controlled drug delivery nanoplatform for infectious diseases treatment. Pharmaceut. Res. 37(10), 191 (2020).
    • 135. Mai WX, Meng H. Mesoporous silica nanoparticles: a multifunctional nano therapeutic system. Integr. Bio. 5(1), 19–28 (2013).
    • 136. Paul AM, Shi Y, Acharya D et al. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. J. Gen. Virol. 95(Pt 8), 1712 (2014).
    • 137. Gan VC. Dengue: moving from current standard of care to state-of-the-art treatment. Curr. Treatment Opt. Infectious Dis. 6, 208–226 (2014).
    • 138. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133–149 (2008).
    • 139. Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine 8(6), 969–981 (2013).