We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An ocean of possibilities: a review of marine organisms as sources of nanoparticles for cancer care

    Mirosława Püsküllüoğlu

    *Author for correspondence: Tel.: +48 126 348 228;

    E-mail Address: mira.puskulluoglu@gmail.com

    Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, Kraków, 31-115, Poland

    ‡Authors contributed equally

    Search for more papers by this author

    &
    Izabela Michalak

    **Author for correspondence: Tel.: +48 713 202 434;

    E-mail Address: izabela.michalak@pwr.edu.pl

    Wrocław University of Science & Technology, Department of Advanced Material Technologies, Smoluchowskiego 25, Wrocław, 50-370, Poland

    ‡Authors contributed equally

    Search for more papers by this author

    Published Online:https://doi.org/10.2217/nnm-2022-0206

    Seas and oceans have been explored for the last 70 years in search of new compounds that can support the battle against cancer. Marine polysaccharides can act as nanomaterials for medical applications and marine-derived bioactive compounds can be applied for the biosynthesis of metallic and nonmetallic nanoparticles. Nanooncology can be used in numerous fields including diagnostics, serving as drug carriers or acting as drugs. This review focuses on marine-derived nanoparticles with potential oncological applications. It classifies organisms used for nanoparticle production, explains the production process, presents different types of nanoparticles with prospective applications in oncology, describes the molecular pathways responsible for numerous nanomedicine applications, tags areas of nanoparticle implementation in oncology and speculates about future directions.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Roma-Rodrigues C, Rivas-García L, Baptista P V, Fernandes AR. Gene therapy in cancer treatment: why go nano? Pharmaceutics 12(3), 233 (2020).
    • 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018).
    • 3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 70(1), 7–30 (2020).
    • 4. Chizenga EP, Abrahamse H. Nanotechnology in modern photodynamic therapy of cancer: a review of cellular resistance patterns affecting the therapeutic response. Pharmaceutics 12(7), 623 (2020).
    • 5. Pereira RB, Evdokimov NM, Lefranc F et al. Marine-derived anticancer agents: clinical benefits, innovative mechanisms, and new targets. Mar. Drugs 17(6), 329 (2019).
    • 6. Dayanidhi DL, Thomas BC, Osterberg JS et al. Exploring the diversity of the marine environment for new anti-cancer compounds. Front. Mar. Sci. 7, 1184 (2021).
    • 7. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 100(1–2), 72–79 (2005).
    • 8. Michalak I, Püsküllüoğlu M. Look into my onco-forest–review of plant natural products with anticancer activity. Curr. Top. Med. Chem. 22(11), 922–938 (2022).
    • 9. Asmathunisha N, Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B. Biointerfaces 103, 283–287 (2013). •• A review covering the biosynthesis of marine-derived nanoparticles (NPs) and organisms acting as NP sources.
    • 10. Saeed A, Su J, Ouyang S. Marine-derived drugs: recent advances in cancer therapy and immune signaling. Biomed. Pharmacother. 134, 111091 (2021).
    • 11. Jaspars M, De Pascale D, Andersen JH, Reyes F, Crawford AD, Ianora A. The marine biodiscovery pipeline and ocean medicines of tomorrow. J. Mar. Biol. Assoc. UK 96(1), 151–158 (2016).
    • 12. Arjunan N, Kumari HLJ, Singaravelu CM, Kandasamy R, Kandasamy J. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. Int. J. Biol. Macromol. 92, 77–87 (2016).
    • 13. Chen X, Han W, Zhao X, Tang W, Wang F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci. Rep. 9(1), 6754 (2019).
    • 14. Chen T, Wong Y-S, Zheng W, Bai Y, Huang L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf. B. Biointerfaces 67(1), 26–31 (2008).
    • 15. Khavari F, Saidijam M, Taheri M, Nouri F. Microalgae: therapeutic potentials and applications. Mol. Biol. Rep. 48(5), 4757–4765 (2021).
    • 16. Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018). •• A review describing the broad role of nanoparticles in medical fields.
    • 17. Ren X, Xie X, Chen B, Liu L, Jiang C, Qian Q. Marine natural products: a potential source of anti-hepatocellular carcinoma drugs. J. Med. Chem. 64(12), 7879–7899 (2021).
    • 18. Jimenez PC, Wilke DV, Branco PC et al. Enriching cancer pharmacology with drugs of marine origin. Br. J. Pharmacol. 177(1), 3–27 (2020).
    • 19. Wu L, Ye K, Jiang S, Zhou G. Marine power on cancer: drugs, lead compounds, and mechanisms. Mar. Drugs 19(9), 488(2021).
    • 20. Sekar P, Ravitchandirane R, Khanam S, Muniraj N, Cassinadane AV. Novel molecules as the emerging trends in cancer treatment: an update. Med. Oncol. 39(2), 20 (2022).
    • 21. Faruqi A, Tadi P. Cytarabine. StatPearls Publishing, Treasure Island (FL) (2022).
    • 22. Larsen AK, Galmarini CM, D'Incalci M. Unique features of trabectedin mechanism of action. Cancer Chemother. Pharmacol. 77(4), 663–671 (2016).
    • 23. Shetty N, Gupta S. Eribulin drug review. South Asian J. Cancer 3(1), 57–59 (2014).
    • 24. Tong JTW, Harris PWR, Brimble MA, Kavianinia I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules 26(19), 5847 (2021).
    • 25. Hafeez U, Parakh S, Gan HK, Scott AM. Antibody–drug conjugates for cancer therapy. Molecules 25(20), 4764 (2020).
    • 26. Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar. Drugs 14(2), 34 (2016).
    • 27. Korbelik M, Hode T, Lam SSK, Chen WR. Novel immune stimulant amplifies direct tumoricidal effect of cancer ablation therapies and their systemic antitumor immune efficacy. Cells 10(3), 492 (2021).
    • 28. Dyshlovoy SA. Recent updates on marine cancer-preventive compounds. Mar. Drugs 19(10), 558 (2021).
    • 29. Correia-da-Silva M, Sousa E, Pinto MMM, Kijjoa A. Anticancer and cancer preventive compounds from edible marine organisms. Semin. Cancer Biol. 46, 55–64 (2017).
    • 30. Asmathunisha N, Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B. Biointerfaces 103, 283–287 (2013).
    • 31. Chugh D, Viswamalya VS, Das B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J. Genet. Eng. Biotechnol. 19(1), 126 (2021).
    • 32. Tian S, Saravanan K, Mothana RA, Ramachandran G, Rajivgandhi G, Manoharan N. Anti-cancer activity of biosynthesized silver nanoparticles using Avicennia marina against A549 lung cancer cells through ROS/mitochondrial damages. Saudi J. Biol. Sci. 27(11), 3018 (2020).
    • 33. González-Ballesteros N, Rodríguez-Argüelles MC, Lastra-Valdor M. Evaluation of the antioxidant capacities of Antarctic macroalgae and their use for nanoparticles production. Molecules 26(4), 1182 (2021). •• Research describing the process of obtaining nanoparticles from macroalgae.
    • 34. Omar HH, Bahabri FS, El-Gendy AM. Biopotential application of synthesis nanoparticles as antimicrobial agents by using Laurencia papillosa. Int. J. Pharmacol. 13(3), 303–312 (2017).
    • 35. Khanna P, Kaur A, Goyal D. Algae-based metallic nanoparticles: synthesis, characterization and applications. J. Microbiol. Methods 163(June), 105656 (2019).
    • 36. Michalak I, Chojnacka K. Algae as production systems of bioactive compounds. Eng. Life Sci. 15(2), 160–176 (2015).
    • 37. Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int. J. Biol. Macromol. 82, 315–327 (2016).
    • 38. Palanisamy S, Vinosha M, Marudhupandi T, Rajasekar P, Prabhu NM. Isolation of fucoidan from Sargassum polycystum brown algae: structural characterization, in vitro antioxidant and anticancer activity. Int. J. Biol. Macromol. 102, 405–412 (2017).
    • 39. Viswanathan S, Palaniyandi T, Shanmugam R, M T, Rajendran BK, Sivaji A. Biomedical potential of silver nanoparticles capped with active ingredients of Hypnea valentiae, red algae species. Part. Sci. Technol. 1–11 (2021).
    • 40. Jacob RH, Shanab SM, Shalaby EA. Algal biomass nanoparticles: chemical characteristics, biological actions, and applications. Biomass Convers. Biorefin. 23, 1–15, (2021).
    • 41. Devi JS, Bhimba BV. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva Iactuca in vitro. Sci. Rep. 1, 242 (2012).
    • 42. Zhang D, Ramachandran G, Mothana RA et al. Biosynthesized silver nanoparticles using Caulerpa taxifolia against A549 lung cancer cell line through cytotoxicity effect/morphological damage. Saudi J. Biol. Sci. 27(12), 3421–3427 (2020).
    • 43. Namvar F, Rahman HS, Mohamad R et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomed. 9, 2479–2488 (2014). •• Research describing the cytotoxic effects of marine particles.
    • 44. Rocha Amorim MO, Lopes Gomes D, Dantas LA et al. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death. Int. J. Biol. Macromol. 93(Pt A), 57–65 (2016).
    • 45. Etman SM, Abdallah OY, Elnaggar YSR. Novel fucoidan-based bioactive targeted nanoparticles from Undaria pinnatifida for treatment of pancreatic cancer. Int. J. Biol. Macromol. 145, 390–401 (2020).
    • 46. Etman SM, Mehanna RA, Bary AA, Elnaggar YSR, Abdallah OY. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer. Int. J. Biol. Macromol. 170, 284–297 (2021).
    • 47. Yosri N, Khalifa SAM, Guo Z, Xu B, Zou X, El-Seedi HR. Marine organisms: pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications. Int. J. Biol. Macromol. 193(Pt B), 1767–1798 (2021).
    • 48. Chanthini AB, Balasubramani G, Ramkumar R et al. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus mediated silver nanoparticles. J. Photochem. Photobiol. B Biol. 153, 145–152 (2015).
    • 49. Palaniappan P, Sathishkumar G, Sankar R. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 138, 885–890 (2015).
    • 50. Eswaraiah G, Peele KA, Krupanidhi S, Kumar RB, Venkateswarulu TC. Identification of bioactive compounds in leaf extract of Avicennia alba by GC-MS analysis and evaluation of its in vitro anticancer potential against MCF7 and HeLa cell lines. J. King Saudi Univ. Sci. 32(1), 740–744 (2020).
    • 51. Bajpai V, Shukla S, Kang S-M et al. Developments of cyanobacteria for nano-marine drugs: relevance of nanoformulations in cancer therapies. Mar. Drugs 16(6), 179 (2018).
    • 52. Todd T, Zhen Z, Tang W et al. Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors. Nanoscale 6(4), 2073–2076 (2014).
    • 53. Sathishkumar RS, Sundaramanickam A, Srinath R et al. Green synthesis of silver nanoparticles by bloom-forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. J. Saudi Chem. Soc. 23(8), 1180–1191 (2019).
    • 54. Hassabo AA, Ibrahim E, Ali B, Emam HE. Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. Biocatal. Agric. Biotechnol. 39, 102261 (2022).
    • 55. Anand BG, Thomas CKN, Prakash S, Kumar CS. Biosynthesis of silver nanoparticles by marine sediment fungi for a dose-dependent cytotoxicity against Hep2 cell lines. Biocatal. Agric. Biotechnol. 4(2), 150–157 (2015). • Research describing the process of obtaining nanoparticles from marine fungi.
    • 56. Subhapradha N, Shanmugam V, Shanmugam A. Chitosan nanoparticles from marine squid protect liver cells against N-diethylnitrosoamine-induced hepatocellular carcinoma. Carbohydr. Polym. 171, 18–26 (2017).
    • 57. Subhapradha N, Shanmugam A. Fabrication of β-chitosan nanoparticles and its anticancer potential against human hepatoma cells. Int. J. Biol. Macromol. 94(Pt A), 194–201 (2017).
    • 58. Subhapradha N, Ramasamy P, Shanmugam V, Madeswaran P, Srinivasan A, Shanmugam A. Physicochemical characterisation of β-chitosan from Sepioteuthis lessoniana gladius. Food Chem. 141(2), 907–913 (2013).
    • 59. Smitha KT, Anitha A, Furuike T, Tamura H, Nair S V, Jayakumar R. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf. B. Biointerfaces 104, 245–253 (2013).
    • 60. Inbakandan D, Kumar C, Bavanilatha M, Ravindra DN, Kirubagaran R, Khan SA. Ultrasonic-assisted green synthesis of flower like silver nanocolloids using marine sponge extract and its effect on oral biofilm bacteria and oral cancer cell lines. Microb. Pathog. 99, 135–141 (2016).
    • 61. Al-Khalaf AA, Hassan HM, Alrajhi AM, Mohamed RAEH, Hozzein WN. Anti-cancer and anti-inflammatory potential of the green synthesized silver nanoparticles of the red sea sponge phyllospongia lamellosa supported by metabolomics analysis and docking study. Antibiotics 10(10), 1155 (2021).
    • 62. González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf. B. Biointerfaces 153, 190–198 (2017).
    • 63. Venkatesan J, Kim S-K, Shim MS. Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomater. (Basel) 6(12), 235 (2016).
    • 64. Shunmugam R, Renukadevi Balusamy S, Kumar V, Menon S, Lakshmi T, Perumalsamy H. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. J. King Saudi Univ. Sci. 33(1), 101260 (2021).
    • 65. Vieira AP, Stein EM, Andreguetti DX, Colepicolo P, da Costa Ferreira AM. Preparation of silver nanoparticles using aqueous extracts of the red algae Laurencia aldingensis and Laurenciella sp. and their cytotoxic activities. J. Appl. Phycol. 28(4), 2615–2622 (2016).
    • 66. Venkatesan T, Choi Y-W, Mun S-P, Kim Y-K. Pinus radiata bark extract induces caspase-independent apoptosis-like cell death in MCF-7 human breast cancer cells. Cell Biol. Toxicol. 32(5), 451–464 (2016).
    • 67. Jeyarani S, Vinita NM, Puja P et al. Biomimetic gold nanoparticles for its cytotoxicity and biocompatibility evidenced by fluorescence-based assays in cancer (MDA-MB-231) and non-cancerous (HEK-293) cells. J. Photochem. Photobiol. B Biol. 202, 111715 (2020).
    • 68. Trindade T, Lusa A. Biofunctional composites of polysaccharides containing inorganic nanoparticles. In: Advances in Nanocomposite Technology. IntechOpen, London, UK (2011).
    • 69. Oliveira C, Neves NM, Reis RL, Martins A, Silva TH. Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine (London) 13(16), 2037–2050 (2018).
    • 70. Rajeshkumar S. Phytochemical constituents of fucoidan (Padina tetrastromatica) and its assisted AgNPs for enhanced antibacterial activity. IET Nanobiotechnol. 11(3), 292–299 (2017).
    • 71. Indra Priyadharshini R, Prasannaraj G, Geetha N et al. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl. Biochem. Biotechnol. 174, 2777–2790 (2014).
    • 72. Gopu M, Kumar P, Selvankumar T et al. Green biomimetic silver nanoparticles utilizing the red algae Amphiroa rigida and its potent antibacterial, cytotoxicity and larvicidal efficiency. Bioprocess Biosyst. Eng. 44(2), 217–223 (2021).
    • 73. Rajeshkumar S, Malarkodi C, Vanaja M, Annadurai G. Anticancer and enhanced antimicrobial activity of biosynthesized silver nanoparticles against clinical pathogens. J. Mol. Struct. 1116, 165–173 (2016).
    • 74. Shankar PD, Shobana S, Karuppusamy I et al. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzyme Microb. Technol. 95, 28–44 (2016).
    • 75. Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol. 14(1), 195–202 (2016).
    • 76. Remya RR, Radhika Rajasree SR, Aranganathan L, Suman TY, Gayathri S. Enhanced cytotoxic activity of AgNPs on retinoblastoma Y79 cell lines synthesised using marine seaweed Turbinaria ornata. IET Nanobiotechnol. 11(1), 18–23 (2017).
    • 77. Li X, Xu H, Chen Z-S, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 1–16 (2011).
    • 78. Venkatpurwar V, Mali V, Bodhankar S, Pokharkar V. In vitro cytotoxicity and in vivo sub-acute oral toxicity assessment of porphyran reduced gold nanoparticles. Toxicol. Environ. Chem. 94(7), 1357–1367 (2012).
    • 79. Pawar VK, Singh Y, Sharma K et al. Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. Int. J. Biol. Macromol. 122, 1100–1114 (2019).
    • 80. Shamay Y, Elkabets M, Li H et al. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. 8(345), 345ra87 (2016).
    • 81. Selvi BCG, Madhavan J, Santhanam A, Gnana Selvi BC, Madhavan J, Santhanam A. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line. Adv. Nat. Sci. Nanosci. Nanotechnol. 7(3), 035015 (2016).
    • 82. Valarmathi N, Ameen F, Almansob A, Kumar P, Arunprakash S, Govarthanan M. Utilization of marine seaweed Spyridia filamentosa for silver nanoparticles synthesis and its clinical applications. Mater. Lett. 263, 127244 (2020).
    • 83. Lu K-Y, Li R, Hsu C-H et al. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr. Polym. 165, 410–420 (2017).
    • 84. Lee KW, Jeong D, Na K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr. Polym. 94(2), 850–856 (2013).
    • 85. Al-Malki AL. In vitro cytotoxicity and pro-apoptotic activity of phycocyanin nanoparticles from Ulva lactuca (Chlorophyta) algae. Saudi J. Biol. Sci. 27(3), 894–898 (2020).
    • 86. Rajeshkumar S, Kumar SV, Malarkodi C, Vanaja M, Paulkumar K, Annadurai G. Optimized synthesis of gold nanoparticles using green chemical process and its in vitro anticancer activity against HepG2. Mech. Mater. Sci. Eng. (March), 1–6 (2017).
    • 87. Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol. 2014, 1–12 (2014).
    • 88. Barbosa AI, Coutinho AJ, Costa Lima SA, Reis S. Marine polysaccharides in pharmaceutical applications: fucoidan and chitosan as key players in the drug delivery match field. Mar. Drugs 17(12), 654 (2019).
    • 89. Pasut G. Grand challenges in nano-based drug delivery. Front. Med. Technol. 1, 1 (2019).
    • 90. Yao Y, Zhou Y, Liu L et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 7, 193 (2020).
    • 91. Liu Z, Lv D, Liu S et al. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLOS ONE 8(4), e60190 (2013).
    • 92. Fedorov SN, Ermakova SP, Zvyagintseva TN, Stonik VA. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar. Drugs 11(12), 4876–4901 (2013).
    • 93. Oliveira C, Granja S, Neves NM et al. Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydr. Polym. 223, 115034 (2019).
    • 94. Subbaiya R, Saravanan M, Priya AR et al. Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells. IET Nanobiotechnol. 11(8), 965–972 (2017).
    • 95. Kim H, Nguyen VP, Manivasagan P et al. Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors. Oncotarget 8(69), 113719–113733 (2017).
    • 96. Desai P, Thumma NJ, Wagh PR et al. Cancer chemoprevention using nanotechnology-based approaches. Front. Pharmacol. 11, 323 (2020).
    • 97. Wu S-Y, Parasuraman V, Hsieh-Chih-Tsai H-C-T et al. Radioprotective effect of self-assembled low molecular weight fucoidan-chitosan nanoparticles. Int. J. Pharm. 579, 119161 (2020).
    • 98. Jiang Z, Okimura T, Yokose T, Yamasaki Y, Yamaguchi K, Oda T. Effects of sulfated fucan, ascophyllan, from the brown Alga Ascophyllum nodosum on various cell lines: a comparative study on ascophyllan and fucoidan. J. Biosci. Bioeng. 110(1), 113–117 (2010).
    • 99. Vishchuk OS, Ermakova SP, Zvyagintseva TN. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity. Carbohydr. Res. 346(17), 2769–2776 (2011).
    • 100. Yang M, Ma C, Sun J et al. Fucoidan stimulation induces a functional maturation of human monocyte-derived dendritic cells. Int. Immunopharmacol. 8(13–14), 1754–1760 (2008).
    • 101. Kuznetsova TA, Smolina TP, Makarenkova ID et al. Immunoadjuvant activity of fucoidans from the brown alga Fucus evanescens. Mar. Drugs 18(3), 155 (2020).
    • 102. Chandrarathna HPSU, Liyanage TD, Edirisinghe SL et al. Marine microalgae, Spirulina maxima-derived modified pectin and modified pectin nanoparticles modulate the gut microbiota and trigger immune responses in mice. Mar. Drugs 18(3), 175 (2020).
    • 103. Dai Z, Zhang J, Wu Q et al. Intestinal microbiota: a new force in cancer immunotherapy. Cell Commun. Signal. 18(1), 90 (2020).
    • 104. Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. Nano Converg. 8(1), 34 (2021).
    • 105. Kalra J, Krishna V, Reddy BSV, Dhar A, Venuganti VVK, Bhat A. Nanoparticles in medical imaging. Nanoparticles Anal. Med. Devices 175–210 (2021).
    • 106. Andreou C, Pal S, Rotter L, Yang J, Kircher MF. Molecular imaging in nanotechnology and theranostics. Mol. Imaging Biol. 19(3), 363–372 (2017).
    • 107. Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 88(1054), 20150207 (2015).
    • 108. Truini A, Alama A, Dal Bello MG et al. Clinical applications of circulating tumor cells in lung cancer patients by CellSearch system. Front. Oncol. 4, 242 (2014).
    • 109. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 93, 52–79 (2015).
    • 110. Senapati D, Patra BC, Kar A et al. Promising approaches of small interfering RNAs (siRNAs) mediated cancer gene therapy. Gene 719, 144071 (2019).
    • 111. Tan ML, Choong PFM, Dass CR. Cancer, chitosan nanoparticles and catalytic nucleic acids. J. Pharm. Pharmacol. 61(1), 3–12 (2010).
    • 112. Amreddy N, Babu A, Muralidharan R et al. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res. 137, 115 (2018).
    • 113. Acharya D, Satapathy S, Thathapudi JJ, Somu P, Mishra G. Biogenic synthesis of silver nanoparticles using marine algae Cladophora glomerata and evaluation of apoptotic effects in human colon cancer cells. Mater. Technol. 37(8), 569–580 (2020).
    • 114. Zhang Z, Teruya K, Eto H, Shirahata S. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways. PLOS ONE 6(11), e27441 (2011).
    • 115. Acharya D, Satapathy S, Somu P, Parida UK, Mishra G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol. Trace Elem. Res. 199(5), 1812–1822 (2021).
    • 116. Chiang CS, Huang BJ, Chen JY et al. Fucoidan-based nanoparticles with inherently therapeutic efficacy for cancer treatment. Pharmaceutics 13(12), 1986 (2021).
    • 117. Ahn E-Y, Hwang SJ, Choi M-J, Cho S, Lee H-J, Park Y. Upcycling of jellyfish (Nemopilema nomurai) sea wastes as highly valuable reducing agents for green synthesis of gold nanoparticles and their antitumor and anti-inflammatory activity. Artif. Cells Nanomed. Biotechnol. 46(Suppl. 2), 1127–1136 (2018).
    • 118. Narazaki M, Segarra M, Tosato G. Sulfated polysaccharides identified as inducers of neuropilin-1 internalization and functional inhibition of VEGF165 and semaphorin3A. Blood 111(8), 4126–4136 (2008).
    • 119. Sanaeimehr Z, Javadi I, Namvar F. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 9(1), 3 (2018). • An example of research describing the antiangiogenic and antiapoptotic effects of marine particles.
    • 120. Liu JM, Bignon J, Haroun-Bouhedja F et al. Inhibitory effect of fucoidan on the adhesion of adenocarcinoma cells to fibronectin. Anticancer Res. 25(3B), 2129–2133 (2005).
    • 121. Adhikari HS, Yadav PN. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int. J. Biomater. 2018, 2952085 (2018).
    • 122. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology 151(2), 458–465 (2010).
    • 123. González-Ballesteros N, Diego-González L, Lastra-Valdor M et al. Immunomodulatory and antitumoral activity of gold nanoparticles synthesized by red algae aqueous extracts. Mar. Drugs 20(3), 182 (2022).
    • 124. Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 34(1), 20180032 (2019).
    • 125. Kim B, Park J-E, Im E et al. Recent advances in nanotechnology with nano-phytochemicals: molecular mechanisms and clinical implications in cancer progression. Int. J. Mol. Sci. 22(7), 3571 (2021). •• A review covering molecular pathways through which NPs influence cancer progression.
    • 126. Katuwavila NP, Perera ADLC, Samarakoon SR et al. Chitosan-alginate nanoparticle system efficiently delivers doxorubicin to MCF-7 cells. J. Nanomater. 2016, 1–12 (2016). • An example of research showing marine NPs as drug-delivery systems.
    • 127. Sultan MH, Moni SS, Madkhali OA et al. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci. Rep. 12(1), 468 (2022).
    • 128. Arias JL, Reddy LH, Couvreur P. Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J. Mater. Chem. 22(15), 7622 (2012).
    • 129. Anirudhan TS, Sekhar VC, Nair SS. Polyelectrolyte complexes of carboxymethyl chitosan/alginate based drug carrier for targeted and controlled release of dual drug. J. Drug Deliv. Sci. Technol. 51, 569–582 (2019).
    • 130. Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U. Loading of gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur. J. Pharmacol. 784, 121–128 (2016).
    • 131. Conde J, Oliva N, Zhang Y, Artzi N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15(10), 1128–1138 (2016).
    • 132. Pietersz GA, Wang X, Yap ML, Lim B, Peter K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine 12(15), 1873–1889 (2017).
    • 133. Kodet O, Němejcova K, Strnadová K et al. The abscopal effect in the era of checkpoint inhibitors. Int. J. Mol. Sci. 22(13), 7204 (2021).
    • 134. Pevzner AM, Tsyganov MM, Ibragimova MK, Litvyakov NV. Abscopal effect in the radio and immunotherapy. Radiat. Oncol. J. 39(4), 247–253 (2021).
    • 135. Jang B, Moorthy MS, Manivasagan P et al. Fucoidan-coated CuS nanoparticles for chemo- and photothermal therapy against cancer. Oncotarget 9(16), 12649–12661 (2018).