We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Therapeutic outcome of quercetin nanoparticles on Cerastes cerastes venom-induced hepatorenal toxicity: a preclinical study

    Kahina Kiouas

    USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria

    ,
    Habiba Oussedik-Oumehdi

    USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria

    &
    Fatima Laraba-Djebari

    *Author for correspondence: Tel.: +213 661 516 276;

    E-mail Address: flaraba@hotmail.com

    USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria

    Published Online:https://doi.org/10.2217/nnm-2022-0188

    Aim: The objective of this study was to investigate the therapeutic potential of quercetin (QT) and QT-loaded poly(lactic-co-glycolic acid) nanoparticles (QT-NPs) on Cerastes cerastes venom-mediated inflammation, redox imbalance, hepatorenal tissue damage and local hemorrhage. Methods: The developed QT-NPs were first submitted to physicochemical characterization and then evaluated in the ‘challenge then treat’ and ‘preincubation’ models of envenoming. Results: QT-NPs efficiently alleviated hepatorenal toxicity, inflammation and redox imbalance and significantly attenuated venom-induced local hemorrhage. Interestingly, QT-NPs were significantly more efficient than free QT at 24 h postenvenoming, pointing to the efficacy of this drug-delivery system. Conclusion: These findings highlight the therapeutic potential of QT-NPs on venom-induced toxicity and open up the avenue for their use in the management of snakebite envenoming.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Gutierrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat. Rev. Dis. Primers 3, 17063 (2017).
    • 2. Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG. Snake envenoming: a disease of poverty. PLOS Negl. Trop. Dis. 3(12), e569 (2009).
    • 3. Chippaux JP. Snakebite envenomation turns again into a neglected tropical disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 23, 38 (2017).
    • 4. World Health Organization. Snakebite envenoming: a strategy for prevention and control. WHO Document Production Services, 1–50, Geneva, Switzerland (2019). https://apps.who.int/iris/handle/10665/312195 (Accessed 2 June 2020). • Describes the global strategy of the WHO to reduce the impact of snakebite envenoming.
    • 5. Williams DJ, Faiz MA, Abela-Ridder B et al. Strategy for a globally coordinated response to a priority neglected tropical disease: snakebite envenoming. PLOS Negl. Trop. Dis. 13(2), e0007059 (2019).
    • 6. Laraba-Djebari F, Martin-Eauclaire M-F, Marchot P. A fibrinogen-clotting serine proteinase from Cerastes cerastes (horned viper) venom with arginine-esterase and amidase activities. Purification, characterization and kinetic parameter determination. Toxicon 30(11), 1399–1410 (1992).
    • 7. Laraba-Djébari F, Martin-Eauclaire M, Mauco G, Marchot P. Afaâcytin, αβ-fibrinogenase from Cerastes cerastes (horned viper) venom, activates purified factor X and induces serotonin release from human blood platelets. Eur. J. Biochem. 233(3), 756–765 (1995).
    • 8. Chippaux JP. Venomous and poisonous animals. II. Viper bites. Med. Trop. (Mars.) 66(5), 423–428 (2006).
    • 9. Allane D, Oussedik-Oumehdi H, Harrat Z, Seve M, Laraba-Djebari F. Isolation and characterization of an anti-leishmanial disintegrin from Cerastes cerastes venom. J. Biochem. Mol. Toxicol. 32(2), e22018 (2018).
    • 10. Ami A, Oussedik-Oumehdi H, Laraba-Djebari F. Biochemical and biological characterization of a dermonecrotic metalloproteinase isolated from Cerastes cerastes snake venom. J. Biochem. Mol. Toxicol. 31(2), 2 (2016).
    • 11. Bennacef-Heffar N, Laraba-Djebari F. Beneficial effects of heparin and L arginine on dermonecrosis effect induced by Vipera lebetina venom: involvement of NO in skin regeneration. Acta Trop. 171, 226–232 (2017).
    • 12. Nourreddine FZ, Oussedik-Oumehdi H, Laraba-Djebari F. Myotoxicity induced by Cerastes cerastes venom: beneficial effect of heparin in skeletal muscle tissue regeneration. Acta Trop. 202, 105274 (2020).
    • 13. Oussedik-Oumehdi H, Laraba-Djebari F. Irradiated Cerastes cerastes venom as a novel tool for immunotherapy. Immunopharmacol. Immunotoxicol. 30(1), 37–52 (2008).
    • 14. Khelfi A, Oussedik-Oumehdi H, Laraba-Djebari F. Therapeutic outcome of anti-inflammatory and antioxidative medicines on the dermonecrotic activity of Cerastes cerastes venom. Inflammation 45(4), 1700–1719 (2022).
    • 15. Cherifi F, Laraba-Djebari F. Pathophysiological and pharmacological effects of snake venom components: molecular targets. Clin. Toxicol. 4(2), 1–9 (2014).
    • 16. Sunitha K, Hemshekhar M, Thushara RM et al. Inflammation and oxidative stress in viper bite: an insight within and beyond. Toxicon 98, 89–97 (2015). •• Describes the contributory role of inflammation and oxidative stress in envenoming pathogenesis.
    • 17. Marcussi S, Santos PR, Menaldo DL et al. Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes. Mut. Res. 724(1–2), 59–63 (2011).
    • 18. Kebir-Chelghoum H, Laraba-Djebari F. Cytotoxicity of Cerastes cerastes snake venom: involvement of imbalanced redox status. Acta Trop. 173, 116–124 (2017).
    • 19. Chippaux JP. Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Biol. Aujourdhui 204(1), 87–91 (2010).
    • 20. Gutiérrez JM, Burnouf T, Harrison RA et al. A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. Bull. World Health Organ. 92(7), 526–532 (2014).
    • 21. Lalloo DG, Theakston RDG. Snake antivenoms. J. Toxicol. Clin. Toxicol. 41(3), 277–290 (2003).
    • 22. Harrison RA, Oluoch GO, Ainsworth S et al. Preclinical antivenom – efficacy testing reveals potentially disturbing deficiencies of snakebite treatment capability in East Africa. PLOS Negl. Trop. Dis. 11(10), e0005969 (2017).
    • 23. De Silva HA, Ryan NM, De Silva HJ. Adverse reactions to snake antivenom, and their prevention and treatment. Br. J. Clin. Pharmacol. 81(3), 446–452 (2016).
    • 24. Williams D, Gutiérrez JM, Harrison R et al. The Global Snake Bite Initiative: an antidote for snake bite. Lancet 375(9708), 89–91 (2010).
    • 25. Williams HF, Layfield HJ, Vallance T et al. The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. Toxins 11(6), 363 (2019).
    • 26. Sanhajariya S, Duffull SB, Isbister GK. Pharmacokinetics of snake venom. Toxins 10(2), 73 (2018).
    • 27. Sharma RD, Katkar GD, Sundaram MS, Swethakumar B, Girish KS, Kemparaju K. Melatonin inhibits snake venom and antivenom induced oxidative stress and augments treatment efficacy. Acta Trop. 169, 14–25 (2017).
    • 28. Bulfone TC, Samuel SP, Bickler PE, Lewin MR. Developing small molecule therapeutics for the initial and adjunctive treatment of snakebite. J. Trop. Med. 2018, 4320175 (2018).
    • 29. Girish KS, Katkar GD, Harrison RA, Kemparaju K. Research into the causes of venom-induced mortality and morbidity identifies new therapeutic opportunities. Am. J. Trop. Med. Hyg. 100(5), 1043–1048 (2019).
    • 30. Gutiérrez JM, Albulescu L-O, Clare RH et al. The search for natural and synthetic inhibitors that would complement antivenoms as therapeutics for snakebite envenoming. Toxins 13(7), 451 (2021). •• Discusses the key aspect in the search for novel venom inhibitory compounds and summarizes some of the most promising developments in this field.
    • 31. Clare RH, Hall SR, Patel RN, Casewell NR. Small molecule drug discovery for neglected tropical snakebite. Trends Pharmacol. Sci. 42(5), 340–353 (2021).
    • 32. Santhosh MS, Sundaram MS, Sunitha K, Kemparaju K, Girish KS. Viper venom-induced oxidative stress and activation of inflammatory cytokines: a therapeutic approach for overlooked issues of snakebite management. Inflamm. Res. 62(7), 721–731 (2013).
    • 33. Sachetto ATA, Rosa JG, Santoro ML. Rutin (quercetin-3-rutinoside) modulates the hemostatic disturbances and redox imbalance induced by Bothrops jararaca snake venom in mice. PLOS Negl. Trop. Dis. 12(10), e0006774 (2018).
    • 34. Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the therapeutics of anti-snake venom. Molecules (Basel) 24(18), 3276 (2019).
    • 35. Zheng YZ, Deng G, Liang Q, Chen DF, Guo R, Lai RC. Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci. Rep. 7(1), 7543 (2017).
    • 36. Wu L, Zhang Q, Mo W et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-beta1/Smads and PI3K/Akt pathways. Sci. Rep. 7(1), 9289 (2017).
    • 37. Srivastava S, Somasagara RR, Hegde M et al. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep. 6, 24049 (2016).
    • 38. Piovezana Bossolani GD, Silva BT, Colombo Martins Perles JV et al. Rheumatoid arthritis induces enteric neurodegeneration and jejunal inflammation, and quercetin promotes neuroprotective and anti-inflammatory actions. Life Sci. 238, 116956 (2019).
    • 39. Güran M, Şanlıtürk G, Kerküklü NR, Altundağ EM, Süha Yalçın A. Combined effects of quercetin and curcumin on anti-inflammatory and antimicrobial parameters in vitro. Eur. J. Pharmacol. 859, 172486 (2019).
    • 40. Ding Y, Li C, Zhang Y et al. Quercetin as a Lyn kinase inhibitor inhibits IgE-mediated allergic conjunctivitis. Food Chem. Toxicol. 135, 110924 (2020).
    • 41. Hou DX, Kumamoto T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid. Redox Signal. 13(5), 691–719 (2010).
    • 42. Ribeiro D, Freitas M, Tomé SM et al. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 38(2), 858–870 (2015).
    • 43. Lin S, Zhang G, Liao Y, Pan J, Gong D. Dietary flavonoids as xanthine oxidase inhibitors: structure–affinity and structure–activity relationships. J. Agric. Food Chem. 63(35), 7784–7794 (2015).
    • 44. Crascì L, Basile L, Panico A et al. Correlating in vitro target-oriented screening and docking: inhibition of matrix metalloproteinases activities by flavonoids. Planta Med. 83(11), 901–911 (2017).
    • 45. Jing Z, Wang Z, Li X et al. Protective effect of quercetin on posttraumatic cardiac injury. Sci. Rep. 6(1), 30812 (2016).
    • 46. Khan H, Ullah H, Aschner M, Cheang WS, Akkol E. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 10(1), 59 (2019).
    • 47. Vafadar A, Shabaninejad Z, Movahedpour A et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 10(1), 32 (2020).
    • 48. Eid HM, Haddad PS. The antidiabetic potential of quercetin: underlying mechanisms. Curr. Med. Chem. 24(4), 355–364 (2017).
    • 49. Pei Y, Parks JS, Kang HW. Quercetin alleviates high-fat diet-induced inflammation in brown adipose tissue. J. Funct. Foods 85, 104614 (2021).
    • 50. Rich GT, Buchweitz M, Winterbone MS, Kroon PA, Wilde PJ. Towards an understanding of the low bioavailability of quercetin: a study of its interaction with intestinal lipids. Nutrients 9(2), 111 (2017).
    • 51. Silva T, Gomes J, Bulhões L et al. Therapeutic potential of quercetin based on nanotechnology: a review. Revista Virtual Química 11, 1405–1416 (2019).
    • 52. Pinheiro RGR, Pinheiro M, Neves AR. Nanotechnology innovations to enhance the therapeutic efficacy of quercetin. Nanomaterials 11(10), 2658 (2021). • Demonstrates the potential biomedical and healthcare applications of quercetin nanoparticles.
    • 53. Begines B, Ortiz T, Pérez-Aranda M et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials 10(7), 1403 (2020).
    • 54. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3), 1377–1397 (2011).
    • 55. Hamzaoui A, Laraba-Djebari F. Development and evaluation of polymeric nanoparticles as a delivery system for snake envenoming prevention. Biologicals 70, 44–52 (2021).
    • 56. Zhou Y, Chen D, Xue G et al. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Adv. 10(57), 34517–34526 (2020).
    • 57. Sun D, Li N, Zhang W et al. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo. J. Nanopart. Res. 18(1), 3 (2015).
    • 58. Yadav N, Tripathi AK, Parveen A. PLGA–quercetin nano-formulation inhibits cancer progression via mitochondrial dependent caspase-3,7 and independent FOXO1 activation with concomitant PI3K/AKT suppression. Pharmaceutics 14(7), 1326 (2022).
    • 59. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55(1), R1–R4 (1989).
    • 60. Krawisz JE, Sharon P, Stenson WF. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity: assessment of inflammation in rat and hamster models. Gastroenterology 87(6), 1344–1350 (1984).
    • 61. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Methods 38(1), 161–170 (1980).
    • 62. Lightfoot YL, Chen J, Mathews CE. Oxidative stress and beta cell dysfunction. Methods Mol. Biol. 900, 347–362 (2012).
    • 63. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358 (1979).
    • 64. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47(3), 469–474 (1974).
    • 65. Kondo H, Kondo S, Ikezawa H, Murata R, Ohsaka A. Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. Jpn. J. Med. Sci. Biol. 13(1–2), 43–51 (1960).
    • 66. Theakston RD, Reid HA. Development of simple standard assay procedures for the characterization of snake venom. Bull. World Health Organ. 61(6), 949–956 (1983).
    • 67. Zielinska A, Carreiro F, Oliveira AM et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25(16), 3731 (2020).
    • 68. Zhang B, Sai Lung P, Zhao S, Chu Z, Chrzanowski W, Li Q. Shape dependent cytotoxicity of PLGA–PEG nanoparticles on human cells. Sci. Rep. 7(1), 7315 (2017).
    • 69. Hickey JW, Santos JL, Williford JM, Mao HQ. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Rel. 219, 536–547 (2015).
    • 70. Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006).
    • 71. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5(4), 505–515 (2008).
    • 72. Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 157, 142–160 (2020).
    • 73. Islam R, Maeda H, Fang J. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin. Drug Deliv. 19(2), 199–212 (2021).
    • 74. Doane TL, Chuang C-H, Hill RJ, Burda C. Nanoparticle ζ -potentials. Acc. Chem. Res. 45(3), 317–326 (2012).
    • 75. Zhu X, Zeng X, Zhang X et al. The effects of quercetin-loaded PLGA–TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine 12(3), 623–632 (2016).
    • 76. Halder A, Mukherjee P, Ghosh S, Mandal S, Chatterji U, Mukherjee A. Smart PLGA nanoparticles loaded with quercetin: cellular uptake and in-vitro anticancer study. Mater. Today Proc. 5(3), 9698–9705 (2018).
    • 77. Lozano O, Lazaro-Alfaro A, Silva-Platas C et al. Nanoencapsulated quercetin improves cardioprotection during hypoxia–reoxygenation injury through preservation of mitochondrial function. Oxid. Med. Cell. Longev. 2019, 7683051 (2019).
    • 78. Ghosh A, Sarkar S, Mandal AK, Das N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia–reperfusion induced neuronal damage in young and aged rats. PLOS ONE 8(4), e57735 (2013).
    • 79. Ersoz M, Erdemir A, Derman S, Arasoglu T, Mansuroglu B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm. Dev. Technol. 25(6), 757–766 (2020).
    • 80. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116(4), 2602–2663 (2016).
    • 81. Boumaiza S, Oussedik-Oumehdi H, Laraba-Djebari F. Pathophysiological effects of Cerastes cerastes and Vipera lebetina venoms: immunoneutralization using anti-native and anti-(60)Co irradiated venoms. Biologicals 44(1), 1–11 (2016).
    • 82. Al-Quraishy S, Dkhil MA, Abdel Moneim AE. Hepatotoxicity and oxidative stress induced by Naja haje crude venom. J. Venom. Anim. Toxins Incl. Trop. Dis. 20(1), 42–42 (2014).
    • 83. Asmari AKA, Khan HA, Banah FA, Al Buraidi AA, Manthiri RA. Serum biomarkers for acute hepatotoxicity of Echis pyramidum snake venom in rats. Int. J. Clin. Exp. Med. 8(1), 1376–1380 (2015).
    • 84. Franca R. Acute hepatotoxicity of Crotalus durissus terrificus (South American rattlesnake) venom in rats. J. Venom. Anim. Toxins Incl. Trop. Dis 15(1), 61–78 (2009).
    • 85. Alfred S, Bates D, White J et al. Acute kidney injury following Eastern Russell’s viper (Daboia siamensis) snakebite in Myanmar. Kidney Int. Rep. 4(9), 1337–1341 (2019).
    • 86. Vikrant S, Jaryal A, Parashar A. Clinicopathological spectrum of snake bite-induced acute kidney injury from India. World J. Nephrol. 6(3), 150–161 (2017).
    • 87. Chaisakul J, Alsolaiss J, Charoenpitakchai M et al. Evaluation of the geographical utility of Eastern Russell’s viper (Daboia siamensis) antivenom from Thailand and an assessment of its protective effects against venom-induced nephrotoxicity. PLOS Negl. Trop. Dis. 13(10), e0007338 (2019).
    • 88. Frezzatti R, Silveira PF. Allopurinol reduces the lethality associated with acute renal failure induced by Crotalus durissus terrificus snake venom: comparison with probenecid. PLOS Negl. Trop. Dis. 5(9), e1312 (2011).
    • 89. Albuquerque P, Da Silva Junior GB, Meneses GC et al. Acute kidney injury induced by Bothrops venom: insights into the pathogenic mechanisms. Toxins 11(3), 148 (2019).
    • 90. Sharma RD, Katkar GD, Sundaram MS et al. Oxidative stress-induced methemoglobinemia is the silent killer during snakebite: a novel and strategic neutralization by melatonin. J. Pineal Res. 59(2), 240–254 (2015).
    • 91. Zuliani JP, Soares AM, Gutiérrez JM. Polymorphonuclear neutrophil leukocytes in snakebite envenoming. Toxicon 187, 188–197 (2020).
    • 92. Lehman HK, Segal BH. The role of neutrophils in host defense and disease. J. Allergy Clin. Immunol. 145(6), 1535–1544 (2020).
    • 93. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 10(1), 45–65 (2003).
    • 94. Stone SF, Isbister GK, Shahmy S et al. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLOS Negl. Trop. Dis. 7(7), e2326 (2013).
    • 95. Katkar G, Shanmuga Sundaram M, Hemshekhar M et al. Melatonin alleviates Echis carinatus venom-induced toxicities by modulating inflammatory mediators and oxidative stress. J. Pineal Res. 56(3), 295–312 (2014).
    • 96. Crocker P, Zad O, Milling T, Maxson T, King B, Whorton E. Human cytokine response to Texas crotaline envenomation before and after antivenom administration. Am. J. Emerg. Med. 28(8), 871–879 (2010).
    • 97. Zuliani JP, Soares AM, Gutierrez JM. Polymorphonuclear neutrophil leukocytes in snakebite envenoming. Toxicon 187, 188–197 (2020).
    • 98. Salazar E, Salazar AM, Taylor P et al. Contribution of endothelial cell and macrophage activation in the alterations induced by the venom of Micrurus tener tener in C57BL/6 mice. Mol. Immunol. 116, 45–55 (2019).
    • 99. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr. Biol. 24(10), 034 (2014).
    • 100. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2(1), 17023 (2017).
    • 101. Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv. Transl. Res. 2(2), 112–123 (2012).
    • 102. Leopoldini M, Russo N, Chiodo S, Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem. 54(17), 6343–6351 (2006).
    • 103. Ugur or Ozgen S, Kılınc O, Selamoglu Z. Antioxidant activity of quercetin: a mechanistic review. Turk. J. Agric. For. 4(12), 1134–1138 (2016).
    • 104. Li Y, Yao J, Han C et al. Quercetin, inflammation and immunity. Nutrients 8(3), 167 (2016). • Describes the pharmacological properties of quercetin.
    • 105. Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24(6), 1123 (2019).
    • 106. Sun L, Xu G, Dong Y, Li M, Yang L, Lu W. Quercetin protects against lipopolysaccharide-induced intestinal oxidative stress in broiler chickens through activation of Nrf2 pathway. Molecules 25(5), 1053 (2020).
    • 107. Min Z, Yangchun L, Yuquan W, Changying Z. Quercetin inhibition of myocardial fibrosis through regulating MAPK signaling pathway via ROS. Pak. J. Pharm. Sci. 32(3 Special), 1355–1359 (2019).
    • 108. Kobori M, Takahashi Y, Sakurai M et al. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet-induced obese mice. Mol. Nutr. Food Res. 60(2), 300–312 (2016).
    • 109. Dong YS, Wang JL, Feng DY et al. Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. Int. J. Med. Sci. 11(3), 282–290 (2014).
    • 110. Li J, Sun Z, Luo G et al. Quercetin attenuates trauma-induced heterotopic ossification by tuning immune cell infiltration and related inflammatory insult. Front. Immunol. 12, 649285 (2021).
    • 111. Li C, Zhang W-J, Frei B. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol. 9, 104–113 (2016).
    • 112. Tong F, Liu S, Yan B, Li X, Ruan S, Yang S. Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium. Int. J. Nanomed. 12, 7799–7813 (2017).
    • 113. Cotrim CA, De Oliveira SC, Diz Filho EB et al. Quercetin as an inhibitor of snake venom secretory phospholipase A2. Chem. Biol. Interact. 189(1–2), 9–16 (2011). •• Study demonstrating quercetin’s inhibitory potential against snake venom secretory phospholipase A2.
    • 114. Gopi K, Anbarasu K, Renu K, Jayanthi S, Vishwanath BS, Jayaraman G. Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake venom induced toxicity. Biochim. Biophys. Acta 1860(7), 1528–1540 (2016).
    • 115. De Oliveira Toyama D, Gaeta HH, De Pinho MV et al. An evaluation of 3-rhamnosylquercetin, a glycosylated form of quercetin, against the myotoxic and edematogenic effects of sPLA 2 from Crotalus durissus terrificus. BioMed Res. Int. 341270(10), 18 (2014).
    • 116. Srinivasa V, Sundaram MS, Anusha S et al. Novel apigenin based small molecule that targets snake venom metalloproteases. PLOS ONE 9(9), e106364 (2014).
    • 117. Preciado LM, Comer J, Nunez V, Rey-Suarez P, Pereanez JA. Inhibition of a snake venom metalloproteinase by the flavonoid myricetin. Molecules 23(10), 2662 (2018).
    • 118. Pereañez JA, Patiño AC, Rey-Suarez P, Núñez V, Henao Castañeda IC, Rucavado A. Glycolic acid inhibits enzymatic, hemorrhagic and edema-inducing activities of BaP1, a P-I metalloproteinase from Bothrops asper snake venom: insights from docking and molecular modeling. Toxicon 71, 41–48 (2013).
    • 119. Heinz SA, Henson DA, Austin MD, Jin F, Nieman DC. Quercetin supplementation and upper respiratory tract infection: a randomized community clinical trial. Pharmacol. Res. 62(3), 237–242 (2010).
    • 120. Buonerba C, De Placido P, Bruzzese D et al. Isoquercetin as an adjunct therapy in patients with kidney cancer receiving first-line sunitinib (QUASAR): results of a phase I trial. Front. Pharmacol. 9, 189 (2018).
    • 121. Zwicker JI, Schlechter BL, Stopa JD et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight 4(4), e125851 (2019).
    • 122. Mazloom Z, Abdollahzadeh S, Dabbaghmanesh M, Rezaianzadeh A. The effect of quercetin supplementation on oxidative stress, glycemic control, lipid profile and insulin resistance in type 2 diabetes: a randomized clinical trial. J. Health Sci. Surveillance Syst. 2(1), 8–14 (2014).
    • 123. Hussain SA, Ahmed ZA, Mahwi TO, Aziz TA. Quercetin dampens postprandial hyperglycemia in type 2 diabetic patients challenged with carbohydrates load. Int. J. Diabetes Res. 1(3), 32–35 (2012).
    • 124. Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int. J. Prev. Med. 4(7), 777 (2013).
    • 125. Kooshyar MM, Mozafari PM, Amirchaghmaghi M et al. A randomized placebo-controlled double blind clinical trial of quercetin in the prevention and treatment of chemotherapy-induced oral mucositis. J. Clin. Diagn. Res. 11(3), ZC46–ZC50 (2017).
    • 126. Pasdar Y, Oubari F, Zarif MN, Abbasi M, Pourmahmoudi A, Hosseinikia M. Effects of quercetin supplementation on hematological parameters in non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Clin. Nutr. Res. 9(1), 11–19 (2020).