We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Expansion of thermometry in magnetic hyperthermia cancer therapy: antecedence and aftermath

    Tashmeen Kaur

    Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India

    &
    Deepika Sharma

    *Author for correspondence:

    E-mail Address: deepika@inst.ac.in

    Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India

    Published Online:https://doi.org/10.2217/nnm-2022-0095

    Magnetic hyperthermia cancer therapy (MHCT) is a promising antitumor therapy based on the generation of heat by magnetic nanoparticles under the influence of an alternating-current magnetic field. However, an often-overlooked factor hindering the translation of MHCT to clinics is the inability to accurately monitor temperature, thereby leading to erroneous thermal control. It is significant to address ‘thermometry’ during magnetic hyperthermia because numerous factors are affected by the magnetic fields employed, rendering traditional thermometry methods unsuitable for temperature estimation. Currently, there is a dearth of literature describing appropriate techniques for thermometry during MHCT. This review offers a general outline of the various modes of conventional thermometry as well as cutting-edge techniques operating at cellular/nanoscale levels (nanothermometry) as prospective thermometers for MHCT in the future.

    References

    • 1. Dahl O, Overgaard J. A century with hyperthermic oncology in Scandinavia. Acta Oncol. 34(8), 1075–1083 (1995).
    • 2. Périgo EA, Hemery G, Sandre O et al. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2(4), 041302 (2015).
    • 3. Asín L, Ibarra MR, Tres A, Goya GF. Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharm. Res. 29(5), 1319–1327 (2012).
    • 4. Gupta R, Kaur T, Chauhan A, Kumar R, Kuanr BK, Sharma D. Tailoring nanoparticles design for enhanced heating efficiency and improved magneto-chemotherapy for glioblastoma. Biomater. Adv. 139, 213021 (2022).
    • 5. Johannsen M, Gneveckow U, Thiesen B et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Int. J. Hyperthermia 52(6), 1653–1662 (2007).
    • 6. Johannsen M, Gneveckow U, Eckelt L et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperthermia 21(7), 637–647 (2005).
    • 7. Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24(6), 467–474 (2008).
    • 8. Chang D, Lim M, Goos J et al. Biologically targeted magnetic hyperthermia: potential and limitations. Front. Pharmacol. 9, 831 (2018).
    • 9. Schena E, Tosi D, Saccomandi P, Lewis E, Kim T. Fiber optic sensors for temperature monitoring during thermal treatments: an overview. Sensors (Basel, Switzerland) 16(7), 1144 (2016).
    • 10. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperthermia 19(3), 267–294 (2003).
    • 11. Dollimore D, Samuels AC. Thermometry. In: Characterization of Materials. Kaufmann EN (Ed.). Wiley Interscience, NJ, USA (2002).
    • 12. Field SB. Biological aspects of hyperthermia. In: Physics and Technology of Hyperthermia. Field SBFranconi C (Eds). Springer, Dordrecht, Germany, 19–53 (1987).
    • 13. Sudharsan NM, Ng EYK, Teh SL. Surface temperature distribution of a breast with and without tumor. Comput. Methods Biomech. Biomed. Eng. 2(3), 187–199 (1999).
    • 14. Shrivastava PN, Saylor TK, Matloubieh AY, Paliwal BR. Hyperthermia thermometry evaluation: criteria and guidelines. Int. J. Rad. Oncol. Biol. Phys. 14(2), 327–335 (1988).
    • 15. Dewhirst M, Phillips T, Samulski T et al. RTOG quality assurance guidelines for clinical trials using hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 18(5), 1249–1259 (1990).
    • 16. Samulski T, Fessenden P. Thermometry in therapeutic hyperthermia. In: Methods of Hyperthermia Control. Gautherie M (Ed.). Springer, Berlin, Germany, 1–34 (1990).
    • 17. Waterman F. Invasive thermometry techniques. In: Thermoradiotherapy and Thermochemotherapy. Seegenschmiedt MHFessenden PVernon CC (Eds). Springer-Verlag, Berlin, Germany, 331–360 (1995).
    • 18. Skumiel A, Hornowski T, Józefczak A, Koralewski M, Leszczyński B. Uses and limitation of different thermometers for measuring heating efficiency of magnetic fluids. Appl. Therm. Eng. 100, 1308–1318 (2016).
    • 19. Shrivastava P, Luk K, Oleson J et al. Hyperthermia quality assurance guidelines. Int. J. Radiat. Oncol. Biol. Phys. 16(3), 571–587 (1989).
    • 20. Sapozink MD, Corry PM, Kapp DS et al. RTOG quality assurance guidelines for clinical trials using hyperthermia for deep-seated malignancy. Int. J. Radiat. Oncol. Biol. Phys. 20(5), 1109–1115 (1991).
    • 21. Vaguine VA, Christensen DA, Lindley JH, Walston TE. Multiple sensor optical thermometry system for application in clinical hyperthermia. IEEE Trans. Biomed. Eng. 31(1), 168–172 (1984).
    • 22. Wickersheim K. A new fiberoptic thermometry system for use in medical hyperthermia. Presented at: Optical Fibers in Medicine II. Cambridge Symposium-Fiber/LASE ‘86, Cambridge, MA, United States (1987).
    • 23. Hand J. Invasive thermometry practice for interstitial hyperthermia. In: Interstitial and Intracavitary Thermoradiotherapy. Seegenschmiedt MHSauer R (Eds). Springer-Verlag, Berlin, Germany, 83–87 (1993).
    • 24. Pearce JV. Towards an ab initio calculation of elemental thermocouple output. Int. J. Metrol. Qual. Eng. 7(2), 202 (2016).
    • 25. Cetas T, Connor W. Thermometry considerations in localized hyperthermia. Med. Phys. 5(2), 79–91 (1978).
    • 26. Carnochan P, Dickinson RJ, Joiner MC. The practical use of thermocouples for temperature measurement in clinical hyperthermia. Int. J. Hyperthermia 2(1), 1–19 (1986).
    • 27. Boekelheide Z, Hussein Z, Hartzell S. Electronic measurements in an alternating magnetic field for studying magnetic nanoparticle hyperthermia: minimizing eddy current heating. IEEE Trans. Magn. 52(7), 1–4 (2016).
    • 28. Doss JD, McCabe CW. Total implants for hyperthermia application and thermometry. Int. J. Hyperthermia 4(6), 617–625 (1988).
    • 29. Guba S, Horváth B, Molnár G, Szalai I. A double cell differential thermometric system for specific loss power measurements in magnetic hyperthermia. Measurement 169, 108652 (2021).
    • 30. Roriz P, Silva S, Frazão O, Novais S. Optical fiber temperature sensors and their biomedical applications. Sensors 20(7), 2113 (2020).
    • 31. Rubio MFJC, Hernández AV, Salas LL. Fiber Optics for Thermometry in Hyperthermia Therapy. IntechOpen (2012). www.intechopen.com/chapters/29119
    • 32. Gupta R, Sharma D. Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Int. J. Hyperthermia 36(1), 302–312 (2019).
    • 33. Gupta R, Sharma D. (Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment. Colloids Surf. B Biointerfaces 205, 111870 (2021).
    • 34. Kumar R, Chauhan A, Jha SK, Kuanr BK. Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies. J. Mater. Chem. B 6(33), 5385–5399 (2018).
    • 35. Martín-Saavedra F, Ruíz-Hernández E, Boré A, Arcos D, Vallet-Regí M, Vilaboa N. Magnetic mesoporous silica spheres for hyperthermia therapy. Acta Biomater. 6(12), 4522–4531 (2010).
    • 36. Ohno T, Wakabayashi T, Takemura A et al. Effective solitary hyperthermia treatment of malignant glioma using stick type CMC-magnetite. In vivo study. J. Neurooncol. 56(3), 233–239 (2002).
    • 37. Maier-Hauff K, Rothe R, Scholz R et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81(1), 53–60 (2007).
    • 38. Wust P, Cho CH, Hildebrandt B, Gellermann J. Thermal monitoring: invasive, minimal-invasive and non-invasive approaches. Int. J. Hyperthermia 22(3), 255–262 (2006).
    • 39. Quesson B, De Zwart JA, Moonen CT. Magneticresonance temperature imaging for guidance of thermotherapy. J. Magn. Reson. Imaging 12(4), 525–533 (2000).
    • 40. Odéen H, Parker DL. Non-invasive thermometry with magnetic resonance imaging. In: Theory and Applications of Heat Transfer in Humans. Shrivastava D (Ed.). https://doi.org/10.1002/9781119127420.ch15 (2018).
    • 41. Vogel M. Monitoring Locally Induced Hyperthermia with Magnetic Resonance Imaging. Erasmus University Rotterdam. Retrieved from http://hdl.handle.net/1765/76023 (2005).
    • 42. Rodrigues HF, Mello FM, Branquinho LC, Zufelato N, Silveira-Lacerda EP, Bakuzis AF. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Int. J. Hyperthermia 29(8), 752–767 (2013).
    • 43. Obaidat IM, Narayanaswamy V, Alaabed S, Sambasivam S, Muralee Gopi CV. Principles of magnetic hyperthermia: a focus on using multifunctional hybrid magnetic nanoparticles. J. Magnetochem. 5(4), 67 (2019).
    • 44. Gellermann J, Wlodarczyk W, Hildebrandt B et al. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res. 65(13), 5872–5880 (2005).
    • 45. Kim KS, Lee SY. Nanoparticle-mediated radiofrequency capacitive hyperthermia: a phantom study with magnetic resonance thermometry. Int. J. Hyperthermia 31(8), 831–839 (2015).
    • 46. Cantillon-Murphy P, Wald LL, Zahn M, Adalsteinsson E. Proposing magnetic nanoparticle hyperthermia in low-field MRI. Concepts Magn. Reson. A Bridg. Educ. Res. 36(1), 36–47 (2010).
    • 47. Haddad D, Hildenbrand MF, Hiller K-H, Haddad-Weber M, Jakob PM. Specific identification of iron oxide-labeled stem cells using magnetic field hyperthermia and MR thermometry. NMR Biomed. 25(3), 402–409 (2012).
    • 48. Buzug TM, Bringout G, Erbe M et al. Magnetic particle imaging: introduction to imaging and hardware realization. J. Med. Phys. 22(4), 323–334 (2012).
    • 49. Zhou XY, Jeffris KE, Yu EY et al. First in vivo magnetic particle imaging of lung perfusion in rats. Phys. Med. Biol. 62(9), 3510–3522 (2017).
    • 50. Yu EY, Chandrasekharan P, Berzon R et al. Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model. ACS Nano 11(12), 12067–12076 (2017).
    • 51. Zhong J, Schilling M, Ludwig F. Magnetic nanoparticle temperature imaging with a scanning magnetic particle spectrometer. Meas. Sci. Technol. 29(11), 115903 (2018).
    • 52. Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation. Med. Phys. 36(5), 1822–1829 (2009).
    • 53. Pantke D, Holle N, Mogarkar A, Straub M, Schulz V. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach. Med. Phys. 46(9), 4077–4086 (2019).
    • 54. Seo CH, Shi Y, Huang S-W, Kim K, O’Donnell M. Thermal strain imaging: a review. Interface Focus 1(4), 649–664 (2011).
    • 55. Bowen T, Connor W, Nasoni R, Pifer A, Sholes R. Measurement of the temperature dependence of the velocity of ultrasound in soft tissues. Opt. Commun. 525, 57–61 (1979).
    • 56. Bamber JC, Hill CR. Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med. Biol. 5(2), 149–157 (1979).
    • 57. Straube WL, Arthur RM. Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry. Ultrasound Med. Biol. 20(9), 915–922 (1994).
    • 58. Arthur RM, Trobaugh JW, Straube WL, Moros EG, Sangkatumvong S. Temperature dependence of ultrasonic backscattered energy in motion compensated images. In: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52(10), 1644–1652 (2005).
    • 59. Hadadian Y, Uliana JH, Carneiro AaO, Pavan TZ. A novel theranostic platform: integration of magnetomotive and thermal ultrasound imaging with magnetic hyperthermia. IEEE Trans. Biomed. Eng. 68(1), 68–77 (2021).
    • 60. Kaczmarek K, Hornowski T, Dobosz B, Józefczak A. Influence of magnetic nanoparticles on the focused ultrasound hyperthermia. Materials 11(9), 1607 (2018).
    • 61. Bayat M, Ballard JR, Ebbini ES. In vivo ultrasound thermography in presence of temperature heterogeneity and natural motions. IEEE Trans. Biomed. Eng. 62(2), 450–457 (2014).
    • 62. Maldague XPV. Theory and practice of infrared technology for nondestructive testing. John Wiley & Son, New York (2001).
    • 63. Lahiri BB, Ranoo S, Philip J. Infrared thermography based magnetic hyperthermia study in Fe3O4 based magnetic fluids. Infrared Phys. Technol. 78, 173–184 (2016).
    • 64. Ma M, Zhang Y, Gu N. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: phantom and numerical studies. J. Therm. Biol. 76, 89–94 (2018).
    • 65. Rodrigues HF, Capistrano G, Mello FM, Zufelato N, Silveira-Lacerda E, Bakuzis AF. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography. Phys. Med. Biol. 62(10), 4062–4082 (2017).
    • 66. Francis F, Anandhi JS, Jacob GA, Sastikumar D, Joseyphus RJ. Temperature sensitivity of magnetic nanoparticle hyperthermia using IR thermography. Int. J. Nanosci. 20(01), 2150002 (2021).
    • 67. Bante-Guerra J, Macías J, Caballero-Aguilar L, Vales-Pinzón C, Alvarado-Gil J. Infrared thermography analysis of thermal diffusion induced by RF magnetic field on agar phantoms loaded with magnetic nanoparticles Proceedings of: Volume 8584, Energy-based Treatment of Tissue and Assessment VII; 858412. SPIE BiOS, San Francisco, California, United States https://doi.org/10.1117/12.2006235 (2013).
    • 68. Du Z, Sun Y, Liu J et al. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer. Meas. Sci. Technol. 29(4), 045003 (2018).
    • 69. Wells J, Twamley S, Sekar A et al. Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy. Nanoscale 12(35), 18342–18355 (2020).
    • 70. Jaque D, Vetrone F. Luminescence nanothermometry. Nanoscale 4(15), 4301–4326 (2012).
    • 71. Löw P, Kim B, Takama N, Bergaud C. High-spatial-resolution surface-temperature mapping using fluorescent thermometry. Small 4(7), 908–914 (2008).
    • 72. Baker GA, Baker SN, Mccleskey TM. Noncontact two-color luminescence thermometry based on intramolecular luminophore cyclization within an ionic liquid. Chem. Comm. 3(23), 2932–2933 (2003).
    • 73. Yakunin S, Benin BM, Shynkarenko Y et al. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites. Nat. Mater. 18(8), 846–852 (2019).
    • 74. Brites CD, Lima PP, Silva NJ et al. Lanthanide-based luminescent molecular thermometers. New J. Chem. 35(6), 1177–1183 (2011).
    • 75. Dong J, Zink JI. Taking the temperature of the interiors of magnetically heated nanoparticles. ACS Nano 8(5), 5199–5207 (2014).
    • 76. Piñol R, Brites CDS, Bustamante R et al. Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties. ACS Nano 9(3), 3134–3142 (2015).
    • 77. Brites CD, Lima PP, Silva NJ et al. A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv. Mater. 22(40), 4499–4504 (2010).
    • 78. Brites C, Lima P, Silva NJO et al. Thermometry at the nanoscale using lanthanide-containing organic–inorganic hybrid materials. J. Lumin. 133, 230–232 (2013).
    • 79. Ortgies DH, Teran FJ, Rocha U et al. Optomagnetic nanoplatforms for in situ controlled hyperthermia. Adv. Funct. Mater. 28(11), 1704434 (2018).
    • 80. Ximendes E, Marin R, Shen Y et al. Infrared-emitting multimodal nanostructures for controlled in vivo magnetic hyperthermia. Adv. Mater. 33(30), 2100077 (2021).
    • 81. Rivero M, Hu J, Jaque D, Cañete M, Sánchez-Marcos J, Muñoz-Bonilla A. Compositional tuning of light-to-heat conversion efficiency and of optical properties of superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C 122(28), 16389–16396 (2018).
    • 82. Yildiz I, Sizirici Yildiz B. Applications of thermoresponsive magnetic nanoparticles. J. Nanomater. 2015, 350596 (2015).
    • 83. Okabe K, Sakaguchi R, Shi B, Kiyonaka S. Intracellular thermometry with fluorescent sensors for thermal biology. Eur. J. Physiol. 470(5), 717–731 (2018).
    • 84. Qiao J, Qi L, Shen Y et al. Thermal responsive fluorescent block copolymer for intracellular temperature sensing. J. Mater. Chem. 22(23), 11543–11549 (2012).
    • 85. Hemery G, Garanger E, Lecommandoux S et al. Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia. J. Phys. D. Appl. Phys. 48(49), 494001 (2015).
    • 86. Wang Z, Ma X, Zong S, Wang Y, Chen H, Cui Y. Preparation of a magnetofluorescent nano-thermometer and its targeted temperature sensing applications in living cells. Talanta 131, 259–265 (2015).
    • 87. Hu X, Li Y, Liu T, Zhang G, Liu S. Intracellular cascade FRET for temperature imaging of living cells with polymeric ratiometric fluorescent thermometers. ACS Appl. Mater. Interfaces 7(28), 15551–15560 (2015).
    • 88. Polo-Corrales L, Rinaldi C. Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers. J. Appl. Phys. 111(7), 07B334 (2012).
    • 89. Brites CDS, Lima PP, Silva NJO et al. Thermometry at the nanoscale. Nanoscale 4(16), 4799–4829 (2012).
    • 90. Harrington WN, Haji MR, Galanzha EI et al. Photoswitchable non-fluorescent thermochromic dye–nanoparticle hybrid probes. Sci. Rep. 6, 36417 (2016).
    • 91. Shen Y, Lifante J, Fernández N, Jaque D, Ximendes E. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability. ACS Nano 14(4), 4122–4133 (2020).
    • 92. Gao H, Kam C, Chou TY, Wu M-Y, Zhao X, Chen S. A simple yet effective AIE-based fluorescent nano-thermometer for temperature mapping in living cells using fluorescence lifetime imaging microscopy. Nanoscale Horiz. 5(3), 488–494 (2020).
    • 93. Shang L, Stockmar F, Azadfar N, Nienhaus GU. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem., Int. Ed. Engl. 52(42), 11154–11157 (2013).
    • 94. Shen Y, Lifante J, Zabala-Gutierrez I et al. Reliable and remote monitoring of absolute temperature during liver inflammation via luminescence-lifetime-based nanothermometry. Adv. Mater. 34(7), 2107764 (2022).