We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Exploring state-of-the-art advances in targeted nanomedicines for managing acute and chronic inflammatory lung diseases

    Sujata Maurya

    School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India

    ,
    Rashi Srivastava

    Chemical & Biochemical Engineering, Indian Institute of Technology, Patna, 801106, India

    ,
    Saniya Arfin

    School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India

    ,
    Susan Hawthorne

    SAAD Building, School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, UK

    ,
    Niraj Kumar Jha

    Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India

    ,
    Kirti Agrawal

    School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India

    ,
    Sibi Raj

    School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India

    ,
    Brijesh Rathi

    Department of Chemistry, Hansraj College, Delhi University, New Delhi, 110007, Delhi, India

    ,
    Arun Kumar

    Mahavir Cancer Institute & Research Centre Patna, Bihar, 800002, India

    ,
    Riya Raj

    Department of Biochemistry, Bangalore University, Bangalore, 560056, Karnataka, India

    ,
    Sharad Agrawal

    Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    ,
    Ana Cláudia Paiva-Santos

    Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal

    ,
    Asrar Ahmad Malik

    Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    ,
    Kamal Dua

    Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia

    ,
    Rakesh Rana

    MSD, HILLEMAN LABS, Analytical Division, New Delhi, 110062, India

    ,
    Shreesh Ojha

    Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates

    ,
    Saurabh Kumar Jha

    Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    Department of Biotechnology Engineering & Food Technology, Chandigarh University, Mohali, 140413, India

    Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India

    ,
    Ankur Sharma

    *Author for correspondence:

    E-mail Address: asharma.nanotechnologist@gmail.com

    Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, G10RE, Scotland, UK

    ,
    Dhruv Kumar

    **Author for correspondence: Tel.: +91 708 243 6598;

    E-mail Address: dhruvbhu@gmail.com

    School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, 248007, India

    ,
    Sally A El-Zahaby

    Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.

    &
    Amka Nagar

    Department of Life Sciences, School of Basic Science & Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India

    Published Online:https://doi.org/10.2217/nnm-2021-0437

    Diagnosis and treatment of lung diseases pose serious challenges. Currently, diagnostic as well as therapeutic methods show poor efficacy toward drug-resistant bacterial infections, while chemotherapy causes toxicity and nonspecific delivery of drugs. Advanced treatment methods that cure lung-related diseases, by enabling drug bioavailability via nasal passages during mucosal formation, which interferes with drug penetration to targeted sites, are in demand. Nanotechnology confers several advantages. Currently, different nanoparticles, or their combinations, are being used to enhance targeted drug delivery. Nanomedicine, a combination of nanoparticles and therapeutic agents, that delivers drugs to targeted sites increases the bioavailability of drugs at these sites. Thus, nanotechnology is superior to conventional chemotherapeutic strategies. Here, the authors review the latest advancements in nanomedicine-based drug-delivery methods for managing acute and chronic inflammatory lung diseases.

    Graphical abstract

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1. The Top 10 Causes of Death. WHO, Geneva, Switzerland (2020).
    • 2. Diamond M, Feliciano HLP, Sanghavi D et al. Acute respiratory distress syndrome. StatPearls Publishing, Treasure Island (FL) (2022).
    • 3. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. British J. Clin. Pharmacol. 56(6), 588–599 (2003).
    • 4. Patra JK, Das G, Fraceto LF et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16(1), 1–33 (2018).
    • 5. Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu. Rev. Pathol. Mech. Dis. 6, 147–163 (2011).
    • 6. Childhood Diseases. UNICEF, USA (2020).
    • 7. Fletcher AE, Breeze E, Shetty PS. Antioxidant vitamins and mortality in older persons: findings from the nutrition add-on study to the Medical Research Council Trial of assessment and management of older people in the community. Am. J. Clin. Nutr. 78(5), 999–1010 (2003).
    • 8. Lai CC, Shih TP, Ko WC et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrobial Agents 55(3), 105924 (2020).
    • 9. Shaver CM, Bastarache JA. Clinical and biological heterogeneity in ARDS: direct versus indirect lung injury. Clin. Chest Med. 35(4), 639–653 (2014).
    • 10. Bulla A, Hitze KL. Acute respiratory infections: a review. Bull. World Health Organ. 56(3), 481 (1978).
    • 11. Thomas M, Bomar PA. Upper respiratory tract infection. StatPearls Publishing, Treasure Island (FL) (2022).
    • 12. Mahashur A. Management of lower respiratory tract infection in outpatient settings: focus on clarithromycin. Lung India 35(2), 143 (2018).
    • 13. Dasaraju PV, Liu C. Chapter 93: Infections of the Respiratory System. University of Texas Medical Branch at Galveston, Galveston, 1 (1996).
    • 14. Lapner ST, Kearon C. Diagnosis and management of pulmonary embolism. BMJ 346, (2013).
    • 15. Coon WW. Risk factors in pulmonary embolism. Surg. Gynecol. Obstet. 143(3), 385–390 (1976).
    • 16. Kucher N, Rossi E, De Rosa M et al. Massive pulmonary embolism. Circulation 113(4), 577–582 (2006).
    • 17. Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. Ann. Transl. Med. 6(2), 32 (2018).
    • 18. Fein AM, Calalang-Colucci MG. Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit. Care Clin. 16(2), 289–317 (2000).
    • 19. Xie M, Liu X, Cao X et al. Trends in prevalence and incidence of chronic respiratory diseases from 1990 to 2017. Respir. Res. 21(1), 1–13 (2020).
    • 20. Anderson CF, Grimmett ME, Domalewski CJ et al. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12(1), e1586 (2020). •• Describes current developments in the design of inhaled nanomaterial-based drug-delivery systems and examines a number of representative systems to highlight the fundamental design concepts that can lead to increased treatment efficacy for common respiratory disorders.
    • 21. World Health Statistics. WHO, Geneva, Switzerland (2022).
    • 22. Sheikh K, Coxson HO, Parraga G. This is what COPD looks like. Respirology 21(2), 224–236 (2016).
    • 23. Kessler R, Partridge MR, Miravitlles M et al. Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Eur. Respir. J. 37(2), 264–272 (2011).
    • 24. Murgia X, Loretz B, Hartwig O et al. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 124, 82–97 (2018).
    • 25. Passi M, Shahid S, Chockalingam S et al. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: implications for chronic airway diseases. Int. J. Nanomed. 3803–3826 (2020). •• Discusses some of the antioxidant therapies now utilized in the treatment and management of chronic airway diseases such as chronic obstructive pulmonary disease and asthma, with emphasis on recent developments in nanotechnology-based therapeutics.
    • 26. GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 5 (9), 691 (2017).
    • 27. Beasley R. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet 351(9111), 1225–1232 (1998).
    • 28. Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med. 32(4), 605–644 (2011).
    • 29. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin. Oncol. 38(1), 55–69 (2011).
    • 30. Miele L, Cordella-Miele E, Xing M et al. Cystic fibrosis gene mutation (deltaF508) is associated with an intrinsic abnormality in Ca2+-induced arachidonic acid release by epithelial cells. DNA Cell Biol. 16(6), 749–759 (1997).
    • 31. Lukacs GL, Verkman AS. CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol. Med. 18(2), 81–91 (2012).
    • 32. Pai M, Behr MA, Dowdy D et al. Tuberculosis. Nat. Rev. Dis. Prim. 2(1), 16076 (2016).
    • 33. Zarogoulidis P, Kioumis I, Pitsiou G et al. Pneumothorax: from definition to diagnosis and treatment. J. Thorac. Dis. 6(Suppl. 4), S372 (2014).
    • 34. Tokuda H. Various aspects of acinar lesions – the key finding of pulmonary tuberculosis on HRCT. Kekkaku 84(8), 551–557 (2009).
    • 35. Mitchell MJ, Billingsley MM, Haley RM et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021).
    • 36. Van Rijt SH, Bein T, Meiners S. Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J. 44(3), 765–774 (2014).
    • 37. Suk JS, Boylan NJ, Trehan K et al. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles. Mol. Ther. 19(11), 1981–1989 (2011).
    • 38. Rytting E, Nguyen J, Wang X et al. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opinion on Drug Deliv. 5(6), 629–639 (2008).
    • 39. Schütz CA, Juillerat-Jeanneret L, Mueller H et al. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine 8(3), 449–467 (2013).
    • 40. Shuvaev VV, Tliba S, Pick J et al. Modulation of endothelial targeting by size of antibody-antioxidant enzyme conjugates. J. Control. Rel. 149(3), 236–241 (2011).
    • 41. Myerson JW, McPherson O, Defrates KG et al. Cross-linker-modulated nanogel flexibility correlates with tunable targeting to a sterically impeded endothelial marker. ACS Nano 13(10), 11409–11421 (2019).
    • 42. Coll Ferrer MC, Shuvaev VV, Zern BJ, Composto RJ, Muzykantov VR, Eckmann DM. ICAM-1 targeted nanogels loaded with dexamethasone alleviate pulmonary inflammation. PLOS ONE 9(7), e102329 (2014).
    • 43. Myerson JW, Braender B, McPherson O et al. Flexible nanoparticles reach sterically obscured endothelial targets inaccessible to rigid nanoparticles. Adv. Mater. 30(32), 1802373 (2018).
    • 44. Shuvaev VV, Khoshnejad M, Pulsipher KW et al. Spatially controlled assembly of affinity ligand and enzyme cargo enables targeting ferritin nanocarriers to caveolae. Biomaterials 185, 348–359 (2018).
    • 45. Geng Y, Dalhaimer P, Cai S et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2(4), 249–255 (2007).
    • 46. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103(13), 4930–4934 (2006).
    • 47. Alexis F, Pridgen E, Molnar LK et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceut. 5(4), 505–515 (2008).
    • 48. Muro S, Garnacho C, Champion JA et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther. 16(8), 1450–1458 (2008).
    • 49. Nel AE, Mädler L, Velegol D et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009).
    • 50. Yoo JW, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv. Drug Deliv. Reviews 63(14-15), 1247–1256 (2011).
    • 51. Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4(2), 219–233 (2012).
    • 52. Monopoli MP, Åberg C, Salvati A et al. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012).
    • 53. Ruge CA, Schaefer UF, Herrmann J et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLOS ONE 7(7), e40775 (2012).
    • 54. Bahadori M, Mohammadi F. Nanomedicine for respiratory diseases. Tanaffos 11(4), 18 (2012).
    • 55. Shuvaev VV, Christofidou-Solomidou M, Scherpereel A et al. Factors modulating the delivery and effect of enzymatic cargo conjugated with antibodies targeted to the pulmonary endothelium. J. Control. Rel. 118(2), 235–244 (2007).
    • 56. Liong M, Lu J, Kovochich M et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889–896 (2008).
    • 57. Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44(10), 1094–1104 (2011).
    • 58. Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers – therapeutic possibilities and technological challenges. Lancet Respir. Med. 1(5), 402–413 (2013).
    • 59. Gupta AK, Singh A, Singh S. Diagnosis of tuberculosis: nanodiagnostics approaches. NanoBioMedicine 261–282 (2020). •• Explains the current tuberculosis diagnostic techniques and emphasizes the most recent developments in Mycobacterium tuberculosis detection testing based on nanotechnology.
    • 60. Brenner JS, Bhamidipati K, Glassman PM et al. Mechanisms that determine nanocarrier targeting to healthy versus inflamed lung regions. Nanomedicine: Nanotechnol. Bio. Med. 13(4), 1495–1506 (2017).
    • 61. Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J. Control. Rel. 219, 576–595 (2015).
    • 62. Brenner JS, Greineder C, Shuvaev V etal. Endothelial nanomedicine for the treatment of pulmonary disease. Expert Opin. Drug Deliv. 12(2), 239–261 (2015).
    • 63. Muzykantov VR. Biomedical aspects of targeted delivery of drugs to pulmonary endothelium. Expert Opin. Drug Deliv. 2(5), 909–926 (2005).
    • 64. Qiao Q, Liu X, Yang T et al. Nanomedicine for acute respiratory distress syndrome: the latest application, targeting strategy, and rational design. Acta Pharmaceut. Sinica B. 11(10), 3060–3091 (2021).
    • 65. Oyaizu T, Fung SY, Shiozaki A et al. Src tyrosine kinase inhibition prevents pulmonary ischemia-reperfusion-induced acute lung injury. Intensive Care Med. 38, 894–905 (2012).
    • 66. Myerson JW, Patel PN, Rubey KM et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat. Nanotechnol. 17(1), 86–97 (2022).
    • 67. Murciano JC, Harshaw DW, Ghitescu L et al. Vascular immunotargeting to endothelial surface in a specific macrodomain in alveolar capillaries. Am. J. Respir. Crit. Care Med. 164(7), 1295–1302 (2001).
    • 68. Preissler G, Loehe F, Huff IV et al. Targeted endothelial delivery of nanosized catalase immunoconjugates protects lung grafts donated after cardiac death. Transplantation 92(4), 380 (2011).
    • 69. Christofidou-Solomidou M, Scherpereel A, Wiewrodt R et al. PECAM-directed delivery of catalase to endothelium protects against pulmonary vascular oxidative stress. American J. Physiology-Lung Cell. Mol. Physiol. 285(2), L283–L292 (2003).
    • 70. Muro S, Cui X, Gajewski C, Murciano JC, Muzykantov VR, Koval M. Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress. Am. J. Physiol. Cell Physiol. 285(5), C1339–C1347 (2003).
    • 71. Shuvaev VV, Christofidou-Solomidou M, Bhora F et al. Targeted detoxification of selected reactive oxygen species in the vascular endothelium. J. Pharmacol. Exp. Ther. 331(2), 404–411 (2009).
    • 72. Han J, Shuvaev VV, Muzykantov VR. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor. J. Pharmacol. Exp. Ther. 338(1), 82–91 (2011).
    • 73. Sweitzer TD, Thomas AP, Wiewrodt R et al. PECAM-directed immunotargeting of catalase: specific, rapid and transient protection against hydrogen peroxide. Free Radic. Biol. Med. 34(8), 1035–1046 (2003).
    • 74. Chacko AM, Han J, Greineder CF et al. Collaborative enhancement of endothelial targeting of nanocarriers by modulating platelet-endothelial cell adhesion molecule-1/cD31 epitope engagement. ACS Nano 9(7), 6785–6793 (2015).
    • 75. Shuvaev VV, Ilies MA, Simone E et al. Endothelial targeting of antibody-decorated polymeric filomicelles. ACS Nano 5(9), 6991–6999 (2011).
    • 76. Ding BS, Gottstein C, Grunow A et al. Endothelial targeting of a recombinant construct fusing a PECAM-1 single-chain variable antibody fragment (scFv) with prourokinase facilitates prophylactic thrombolysis in the pulmonary vasculature. Blood 106(13), 4191–4198 (2005).
    • 77. Garnacho C, Shuvaev V, Thomas A et al. RhoA activation and actin reorganization involved in endothelial CAM-mediated endocytosis of anti-PECAM carriers: critical role for tyrosine 686 in the cytoplasmic tail of PECAM-1. Blood 111(6), 3024–3033 (2008).
    • 78. Parhiz H, Shuvaev VV, Pardi N et al. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J. Control. Rel. 291, 106–115 (2018).
    • 79. Kiseleva R, Greineder CF, Villa CH et al. Mechanism of collaborative enhancement of binding of paired antibodies to distinct epitopes of platelet endothelial cell adhesion molecule-1. PLOS ONE 12(1), e0169537 (2017).
    • 80. Shuvaev VV, Muro S, Arguiri E et al. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates. J. Control. Rel. 234, 115–123 (2016).
    • 81. Shuvaev VV, Tliba S, Nakada M et al. Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide. J. Pharmacol. Exp. Ther. 323(2), 450–457 (2007).
    • 82. Atochina EN, Balyasnikova IV, Danilov SM et al. Immunotargeting of catalase to ACE or ICAM-1 protects perfused rat lungs against oxidative stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 275(4), L806–L817 (1998).
    • 83. Kartha S, Yan L, Weisshaar CL et al. Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidants for treating neuropathic pain. Adv. Healthc. Mater. 6(17), 1700500 (2017).
    • 84. Simone EA, Dziubla TD, Discher DE et al. Filamentous polymer nanocarriers of tunable stiffness that encapsulate the therapeutic enzyme catalase. Biomacromolecules 10(6), 1324–1330 (2009).
    • 85. Simone EA, Dziubla TD, Arguiri E et al. Loading PEG-catalase into filamentous and spherical polymer nanocarriers. Pharm. Res. 26, 250–260 (2009).
    • 86. Dziubla TD, Shuvaev VV, Hong NK et al. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials 29(2), 215–227 (2008).
    • 87. Simone EA, Dziubla TD, Colon-Gonzalez F et al. Effect of polymer amphiphilicity on loading of a therapeutic enzyme into protective filamentous and spherical polymer nanocarriers. Biomacromolecules 8(12), 3914–3921 (2007).
    • 88. Khoshnejad M, Shuvaev VV, Pulsipher KW et al. Vascular accessibility of endothelial targeted ferritin nanoparticles. Bioconjug. Chem. 27(3), 628–637 (2016).
    • 89. Chorny M, Hood E, Levy RJ, Muzykantov VR. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J. Control. Rel. 146(1), 144–151 (2010).
    • 90. Danilov SM, Gavrilyuk VD, Franke FE et al. Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting. Am. J. Physiol. Lung Cell. Mol. Physiol. 280(6), L1335–L1347 (2001).
    • 91. Muro S, Muzykantov V. Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules. Curr. Pharm. Des. 11(18), 2383–2401 (2005).
    • 92. Shuvaev VV, Han J, Yu KJ et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25(1), 348 (2011).
    • 93. Shuvaev VV, Han J, Tliba S et al. Anti-inflammatory effect of targeted delivery of SOD to endothelium: mechanism, synergism with NO donors and protective effects in vitro and in vivo. PLOS ONE 8(10), e77002 (2013).
    • 94. Howard MD, Greineder CF, Hood ED, Muzykantov VR. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. J. Control. Rel. 177, 34–41 (2014).
    • 95. Garnacho C, Albelda SM, Muzykantov VR, Muro S. Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes. J. Control. Rel. 130(3), 226–233 (2008).
    • 96. Ding BS, Hong N, Christofidou-Solomidou M et al. Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation. Am. J. Respir. Crit. Care Med. 180(3), 247–256 (2009).
    • 97. Ding BS, Hong N, Murciano JC et al. Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-1 in the pulmonary vasculature. Blood 111(4), 1999–2006 (2008).
    • 98. Greineder CF, Johnston IH, Villa CH et al. ICAM-1-targeted thrombomodulin mitigates tissue factor-driven inflammatory thrombosis in a human endothelialized microfluidic model. Blood Adv. 1(18), 1452–1465 (2017).
    • 99. Greineder CF, Chacko AM, Zaytsev S et al. Vascular immunotargeting to endothelial determinant ICAM-1 enables optimal partnering of recombinant scFv-thrombomodulin fusion with endogenous cofactor. PLOS ONE 8(11), e80110 (2013).
    • 100. Carnemolla R, Greineder CF, Chacko AM et al. Platelet endothelial cell adhesion molecule targeted oxidant-resistant mutant thrombomodulin fusion protein with enhanced potency in vitro and in vivo. J. Pharmacol. Exp. Ther. 347(2), 339–345 (2013).
    • 101. Hood ED, Chorny M, Greineder CF et al. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials 35(11), 3708–3715 (2014).
    • 102. Howard MD, Hood ED, Greineder CF, Alferiev IS, Chorny M, Muzykantov V. Targeting to endothelial cells augments the protective effect of novel dual bioactive antioxidant/anti-inflammatory nanoparticles. Mol. Pharm. 11(7), 2262–2270 (2014).
    • 103. Hood ED, Greineder CF, Dodia C et al. Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo. J. Control. Rel. 163(2), 161–169 (2012).
    • 104. Anselmo AC, Mitragotri S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J. Control. Rel. 190, 531–541 (2014).
    • 105. Zelepukin IV, Yaremenko AV, Shipunova VO et al. Nanoparticle-based drug delivery: via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale 11(4), 1636–1646 (2019).
    • 106. Brenner JS, Pan DC, Myerson JW et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9(1), 2684 (2018).
    • 107. Xu Y, Xiang J, Zhao H et al. Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury. Biomaterials 100, 91–100 (2016).
    • 108. Guagliardo R, Pérez-Gil J, De Smedt S et al. Pulmonary surfactant and drug delivery: focusing on the role of surfactant proteins. J. Control. Rel. 291, 116–126 (2018).
    • 109. Hsu CY, Sung CT, Aljuffali IA et al. Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. Nanomed. Nanotechnol. Biol. Med. 14(2), 215–225 (2018).
    • 110. Tavano L, Pinazo A, Abo-Riya M et al. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release. Colloids Surf. B Biointerfaces 120, 160–167 (2014).
    • 111. Chen XY, Wang SM, Li N et al. Creation of lung-targeted dexamethasone immunoliposome and its therapeutic effect on bleomycin-induced lung injury in rats. PLOS ONE 8(3), e58275 (2013).
    • 112. Li N, Weng D, Wang SM et al. Surfactant protein-a nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Deliv. 24(1), 1770–1781 (2017).
    • 113. Hickey AJ. Controlled delivery of inhaled therapeutic agents. J. Control. Rel. 190, 182–188 (2014).
    • 114. Scherließ R. Future of nanomedicines for treating respiratory diseases. Expert Opin. Drug Deliv. 16(1), 59–68 (2019).
    • 115. Mejías JC, Forrest OA, Margaroli C et al. Neutrophil-targeted, protease-activated pulmonary drug delivery blocks airway and systemic inflammation. JCI Insight 4(23), (2019).
    • 116. Machhi J, Shahjin F, Das S et al. Nanocarrier vaccines for SARS-CoV-2. Adv. Drug Deliv. Reviews 171, 215–239 (2021).
    • 117. Ma X, Zou F, Yu F et al. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity 53(6), 1315–1330 (2020).
    • 118. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front. Immunol. 9, 2224 (2018).
    • 119. Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 10(9), 3886–3907 (2013).
    • 120. Pedre B, Barayeu U, Ezeriņa D et al. The mechanism of action of N-acetylcysteine (NAC): the emerging role of H2S and sulfane sulfur species. Pharmacol. Therapeut. 228, 107916 (2021).
    • 121. Rahman I. Antioxidant therapies in COPD. Int. J. Chronic Obstructive Pulmon. Dis. 1(1), 15–29 (2006).
    • 122. Aggarwal V, Tuli HS, Varol A et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9(11), 735 (2019).
    • 123. Braga PC, Dal Sasso M, Sala MT et al. Effects of erdosteine and its metabolites on bacterial adhesiveness. Arzneimittel-Forschung 49(4), 344–350 (1999).
    • 124. Rahman I. Antioxidant therapeutic advances in COPD. Therapeut. Adv. Respirat. Dis. 2(6), 351–374 (2008).
    • 125. Forni C, Facchiano F, Bartoli M et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int. 2019 (2019).
    • 126. Meyer M, Wagner E. pH-responsive shielding of non-viral gene vectors. Expert Opin. Drug Deliv. 3(5), 563–571 (2006).
    • 127. Hatakeyama H, Akita H, Kogure K et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Therapy 14(1), 68–77 (2007).
    • 128. Vij N. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin. Drug Deliv. 8(9), 1105–1109 (2011).
    • 129. Geiser M, Quaile O, Wenk A et al. Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part. Fibre Toxicol. 10(1), 1–10 (2013).
    • 130. Roulet A, Armand L, Dagouassat M et al. Intratracheally administered titanium dioxide or carbon black nanoparticles do not aggravate elastase-induced pulmonary emphysema in rats. BMC Pulm. Med. 12, 1–12 (2012).
    • 131. Al Faraj A, Shaik AS, Afzal S, Al Sayed B, Halwani R. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int. J. Nanomed. 9, 1491 (2014).
    • 132. Acosta MF, Abrahamson MD, Encinas-Basurto D, Fineman JR, Black SM, Mansour HM. Inhalable nanoparticles/microparticles of an AMPK and Nrf2 activator for targeted pulmonary drug delivery as dry powder inhalers. The AAPS J. 23, 1–14 (2021).
    • 133. Konstan MW, Davis PB, Wagener JS et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Human Gene Therapy 15(12), 1255–1269 (2004).
    • 134. Cartiera MS, Ferreira EC, Caputo C, Egan ME, Caplan MJ, Saltzman WM. Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Mol. Pharm. 7(1), 86–93 (2010).
    • 135. Guan S, Munder A, Hedtfeld S et al. Self-assembled peptide–poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nat. Nanotechnol. 14(3), 287–297 (2019).
    • 136. Tan M, Reyes-Ortega F, Schneider-Futschik EK. Magnetic nanoparticle-based drug delivery approaches for preventing and treating biofilms in cystic fibrosis. Magnetochemistry 6(4), 72 (2020).
    • 137. Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv. Healthc. Mater. 2(4), 576–584 (2013).
    • 138. Kim H, Park HT, Tae YM et al. Bioimaging and pulmonary applications of self-assembled Flt1 peptide-hyaluronic acid conjugate nanoparticles. Biomaterials 34(33), 8478–8490 (2013).
    • 139. Chen X, Huang W, Kwan Wong BC et al. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int. J. Nanomed. 1139–1148 (2012).
    • 140. Lanza GM, Jenkins J, Schmieder AH et al. Anti-angiogenic nanotherapy inhibits airway remodeling and hyper-responsiveness of dust mite triggered asthma in the brown Norway rat. Theranostics 7(2), 377 (2017).
    • 141. Mueller C, Flotte TR. Gene therapy for cystic fibrosis. Clin. Rev. Allergy Immunol. 35(3), 164–178 (2008).
    • 142. Costa-Gouveia J, Pancani E, Jouny S et al. Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci. Rep. 7(1), 5390 (2017).
    • 143. Arafa MG, Ayoub BM. Nano-vesicles of salbutamol sulphate in metered dose inhalers: formulation, characterization and in vitro evaluation. Int. J. Appl. Pharm. 9(6), 100–105 (2017).
    • 144. Wu YL, Park K, Soo RA et al. INSPIRE: a phase III study of the BLP25 liposome vaccine (L-BLP25) in Asian patients with unresectable stage III non-small-cell lung cancer. BMC Cancer 11(1) 1–7 (2011).
    • 145. Alton EWFW, Armstrong DK, Ashby D et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3(9), 684–691 (2015).
    • 146. Meers P, Neville M, Malinin V et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 61(4), 859–868 (2008).
    • 147. Moreno-Sastre M, Pastor M, Salomon CJ et al. Pulmonary drug delivery: a review on nanocarriers for antibacterial chemotherapy. J. Antimicrob. Chemother. 70(11), 2945–2955 (2015).
    • 148. Mohamed A, Kunda NK, Ross K, Hutcheon GA, Saleem IY. Polymeric nanoparticles for the delivery of miRNA to treat chronic obstructive pulmonary disease (COPD). Eur. J. Pharm. Biopharm. 136, 1–8 (2019).
    • 149. Ho DK, Murgia X, De Rossi C et al. Squalenyl hydrogen sulfate nanoparticles for simultaneous delivery of tobramycin and an alkylquinolone quorum sensing inhibitor enable the eradication of P. aeruginosa biofilm infections. Angew. Chemie Int. Ed. 132(26), 10378–10382 (2020).
    • 150. Wang Y, Yuan Q, Feng W et al. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J. Nanobiotechnol. 17(1), 1–16 (2019).
    • 151. Hwang AA, Lee BY, Clemens DL, Dillon BJ, Zink JI, Horwitz MA. Tuberculosis: pH-responsive isoniazid-loaded nanoparticles markedly improve tuberculosis treatment in mice. Small 11(38), 5066–5078 (2015).
    • 152. Keil TWM, Feldmann DP, Costabile G, Zhong Q, da Rocha S, Merkel OM. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. Eur. J. Pharm. Biopharm. 143, 61–69 (2019).
    • 153. Konstan MW, Davis PB, Wagener JS et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther. 15(12), (2004).
    • 154. Sanchez-Guzman D, Le Guen P, Villeret B et al. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials 217, 119308 (2019).
    • 155. Ellis T, Chiappi M, García-Trenco A et al. Multimetallic microparticles increase the potency of rifampicin against intracellular Mycobacterium tuberculosis. ACS Nano. 12(6), 5228–5240 (2018).
    • 156. Ahmad FJ, Mittal G, Jain GK et al. Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur. J. Pharm. Biopharm. 71(2), 282–291 (2009).
    • 157. Liu B, Cao W, Qiao G et al. Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer. Acta Biomater. 99, 307–319 (2019).
    • 158. Reid G, Kao SC, Pavlakis N et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8(8), (2016).
    • 159. Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med. 5(9), a017863 (2015).
    • 160. Robinson E, MacDonald KD, Slaughter K et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol. Ther. 26(8), 2034–2046 (2018).
    • 161. Da Silva AL, Martini SV, Abreu SC et al. DNA nanoparticle-mediated thymulin gene therapy prevents airway remodeling in experimental allergic asthma. J. Control. Rel. 180, 125–133 (2014).
    • 162. Zhao Y, Xu A, Xu Q et al. Bone marrow mesenchymal stem cell transplantation for treatment of emphysemic rats. Int. J. Clin. Exp. Med. 7(4), 968 (2014).
    • 163. Rojas M, Xu J, Woods CR et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am. J. Respir. Cell Mol. Biol. 33(2), 145–152 (2005).
    • 164. Howard M, Zern BJ, Anselmo AC etal. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Nano 8(5) 4100–4132 (2014).
    • 165. Parhiz H, Khoshnejad M, Myerson JW et al. Unintended effects of drug carriers: big issues of small particles. Adv. Drug Deliv. Reviews 130, 90–112 (2018).
    • 166. Bourdon JA, Saber AT, Jacobsen NR et al. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part. Fibre Toxicol. 9, 1–14 (2012).
    • 167. Glassman PM, Myerson JW, Ferguson LT et al. Targeting drug delivery in the vascular system: focus on endothelium. Adv. Drug Deliv. Reviews 157, 96–117 (2020).