We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Recent advances and future perspectives of porous materials for biomedical applications

    Maria Soledad Orellano

    Department of Applied Chemistry, Chemistry Faculty, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain

    POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia/San Sebastián, Gipuzkoa, Spain

    ,
    Oihane Sanz

    Department of Applied Chemistry, Chemistry Faculty, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain

    ,
    Sandra Camarero-Espinosa

    POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia/San Sebastián, Gipuzkoa, Spain

    IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain

    ,
    Ana Beloqui

    Department of Applied Chemistry, Chemistry Faculty, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain

    POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia/San Sebastián, Gipuzkoa, Spain

    IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain

    &
    Marcelo Calderón

    *Author for correspondence:

    E-mail Address: marcelo.calderon@polymat.eu

    Department of Applied Chemistry, Chemistry Faculty, University of the Basque Country (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain

    POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, Donostia/San Sebastián, Gipuzkoa, Spain

    IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain

    Published Online:https://doi.org/10.2217/nnm-2021-0436
    Free first page

    References

    • 1. Liu X, Song N, Qian D et al. Porous inorganic materials for bioanalysis and diagnostic applications. ACS Biomater. Sci. Eng. doi:10.1021/acsbiomaterials.1c00733 (2021) (Epub ahead of print).
    • 2. Thommes M, Kaneko K, Neimark AV et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015).
    • 3. Cai G, Yan P, Zhang L, Zhou H-C, Jiang H-L. Metal–organic framework-based hierarchically porous materials: synthesis and applications. Chem. Rev. 121(20), 12278–12326 (2021).
    • 4. Limongi T, Susa F, Allione M, di Fabrizio E. Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics 12(9), 851 (2020).
    • 5. Schlumberger C, Thommes M. Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry – a tutorial review. Adv. Mater. Interfaces 8(4), 2002181 (2021).
    • 6. Klobes P, Meyer K, Munro RG. Porosity and Specific Surface Area Measurements for Solid Materials. NIST Recommended Practice Guide. (960th Edition). National Institute of Standards and Technology, DC, USA (2006).
    • 7. Gregg SJ, Sing KSW. Adsorption, Surface Area and Porosity. (Second Edition). Academic Press, London, UK (1982).
    • 8. Bertier P, Schweinar K, Stanjek H et al. On the use and abuse of N2 physisorption for the characterization of the pore structure of shales. In: The Clay Mineral Society Workshop Lectures Series (Volume 21. Chapter 12). The Clay Minerals Society, VA, USA, 151–161 (2016).
    • 9. Elshaer D, Moniruzzaman M, Ong YT et al. Facile synthesis of dendrimer like mesoporous silica nanoparticles to enhance targeted delivery of interleukin-22. Biomater. Sci. 9(22), 7402–7411 (2021).
    • 10. Witting M, Molina M, Obst K et al. Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomedicine 11(5), 1179–1187 (2015).
    • 11. Navarro L, Theune LE, Calderón M. Effect of crosslinking density on thermoresponsive nanogels: a study on the size control and the kinetics release of biomacromolecules. Eur. Polym. J. 124, 109478 (2020).
    • 12. Yan R, Ren J, Wen J et al. Enzyme therapeutic for ischemia and reperfusion injury in organ transplantation. Adv. Mater. doi.org/10.1002/adma.202105670 (2021) (Epub ahead of print).
    • 13. Qin M, Cao Z, Wen J et al. An antioxidant enzyme therapeutic for COVID‐19. Adv.Mater. 32(43), 2004901 (2020).
    • 14. Beloqui A, Kobitski AY, Nienhaus GU, Delaittre G. A simple route to highly active single-enzyme nanogels. Chem. Sci. 9(4), 1006–1013 (2018).
    • 15. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24), 2529–2543 (2000).
    • 16. Di Luca A, Lorenzo-Moldero I, Mota C et al. Tuning cell differentiation into a 3D scaffold presenting a pore shape gradient for osteochondral regeneration. Adv. Healthc. Mater. 5(14), 1753–1763 (2016).
    • 17. Walthers CM, Nazemi AK, Patel SL, Wu BM, Dunn JCY. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle. Biomaterials 35(19), 5129–5137 (2014).
    • 18. Iturriaga L, Van Gordon KD, Larrañaga-Jaurrieta G, Camarero‐Espinosa S. Strategies to introduce topographical and structural cues in 3D‐printed scaffolds and implications in tissue regeneration. Adv. NanoBiomed Res. 1(12), 2100068 (2021).
    • 19. Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine (Lond.) 15(27), 2707–2727 (2020).
    • 20. Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable polymeric scaffolds for enzyme immobilization. Front. Bioeng. Biotechnol. 8, 830 (2020).
    • 21. Echeverria Molina MI, Malollari KG, Komvopoulos K. Design challenges in polymeric scaffolds for tissue engineering. Front. Bioeng. Biotechnol. 9, 617141 (2021).