We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Advances and opportunities in nanoimaging agents for the diagnosis of inflammatory lung diseases

    Hema Brindha Masanam

    Advanced Nano-Theranostics (ANTs), Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603 203, India

    ,
    Govindaraj Perumal

    Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Velappanchavadi, Chennai, 600 077, India

    Department of Biomedical Engineering, Rajalakshmi Engineering College, Thandalam, Chennai, 602 105, India

    ,
    Saravanan Krishnan

    Creative Carbon Labs Pvt Ltd, Chennai, Tamil Nadu, 600113, India

    ,
    Sachin Kumar Singh

    School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India

    ,
    Niraj Kumar Jha

    Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India

    ,
    Dinesh Kumar Chellappan

    Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia

    ,
    Kamal Dua

    Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia

    ,
    Piyush Kumar Gupta

    *Author for correspondence:

    E-mail Address: piyush.kumar1@sharda.ac.in

    ;

    E-mail Address: dr.piyushkgupta@gmail.com

    Department of Life Sciences, School of Basic Sciences & Research (SBSR), Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India

    Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India

    Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia

    &
    Ashwin Kumar Narasimhan

    **Author for correspondence:

    E-mail Address: ashwinkn@srmist.edu.in

    Advanced Nano-Theranostics (ANTs), Biomaterials Lab, Department of Biomedical Engineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, 603 203, India

    Published Online:https://doi.org/10.2217/nnm-2021-0427

    The development of rapid, noninvasive diagnostics to detect lung diseases is a great need after the COVID-2019 outbreak. The nanotechnology-based approach has improved imaging and facilitates the early diagnosis of inflammatory lung diseases. The multifunctional properties of nanoprobes enable better spatial–temporal resolution and a high signal-to-noise ratio in imaging. Targeted nanoimaging agents have been used to bind specific tissues in inflammatory lungs for early-stage diagnosis. However, nanobased imaging approaches for inflammatory lung diseases are still in their infancy. This review provides a solution-focused approach to exploring medical imaging technologies and nanoprobes for the detection of inflammatory lung diseases. Prospects for the development of contrast agents for lung disease detection are also discussed.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Jiang XQ, Mei XD, Feng D. Air pollution and chronic airway diseases: what should people know and do? J. Thorac. Dis. 8(1), E31–40 (2016).
    • 2. Cingi C, Muluk NB, Editors. Acute viral rhinitis. In: All Around Nose. Springer Nature Switzerland, Cham, Switzerland doi:10.1007/978-3-030-21217-9_23(199–202) (2019).
    • 3. Strashun S, D'sa S, Foley D, Hannon J, Murphy AM, O'Gorman CS. Physical illnesses associated with childhood homelessness: a literature review. Ir. J. Med. Sci. 189(4), 1331–1336 (2020).
    • 4. Rather LJ. Acute inflammation. JAMA 225(9), 1128–1129 (1973).
    • 5. Guo S, Dipietro LA. Factors affecting wound healing. J. Dent. Res. 89(3), 219–229 (2010).
    • 6. Kalchiem-Dekel O, Galvin JR, Burke AP, Atamas SP, Todd NW. Interstitial lung disease and pulmonary fibrosis: a practical approach for general medicine physicians with focus on the medical history. J. Clin. Med. 7(12), 476 (2018).
    • 7. Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin. Microbiol. Rev. 15(1), 79–94 (2002).
    • 8. Bartholmai BJ, Raghunath S, Karwoski RA et al. Quantitative computed tomography imaging of interstitial lung diseases. J. Thorac. Imaging 28(5), 298–307 (2013).
    • 9. Mclean-Tooke A, Moore I, Lake F. Idiopathic and immune-related pulmonary fibrosis: diagnostic and therapeutic challenges. Clin. Transl. Immunol. 8(11), e1086 (2019).
    • 10. Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370(9589), 765–773 (2007).
    • 11. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364(9435), 709–721 (2004).
    • 12. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu. Rev. Pathol. 4, 435–459 (2009).
    • 13. Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am. J. Respir. Crit. Care Med. 157(4 Pt 1), 1301–1315 (1998).
    • 14. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497–506 (2020).
    • 15. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin. Immunol. 215, 108427 (2020).
    • 16. Peat JK, Haby M, Spijker J, Berry G, Woolcock AJ. Prevalence of asthma in adults in Busselton, Western Australia. BMJ 305(6865), 1326–1329 (1992).
    • 17. Fahy JV. Type 2 inflammation in asthma–present in most, absent in many. Nat. Rev. Immunol. 15(1), 57–65 (2015).
    • 18. Zhu Z, Homer RJ, Wang Z et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103(6), 779–788 (1999).
    • 19. He Y, Shi J, Yi W et al. Discovery of a highly potent glucocorticoid for asthma treatment. Cell Discov. 1, 15035 (2015).
    • 20. Zheng M. Classification and pathology of lung cancer. Surg. Oncol. Clin. N. Am. 25(3), 447–468 (2016).
    • 21. De Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Global Health 8(2), e180–e190 (2020).
    • 22. Gomes M, Teixeira AL, Coelho A, Araujo A, Medeiros R. The role of inflammation in lung cancer. Adv. Exp. Med. Biol. 816, 1–23 (2014).
    • 23. Weatherley ND, Eaden JA, Stewart NJ et al. Experimental and quantitative imaging techniques in interstitial lung disease. Thorax 74(6), 611–619 (2019).
    • 24. Veldhoen S, Weng AM, Knapp J et al. Self-gated non-contrast-enhanced functional lung MR Imaging for quantitative ventilation assessment in patients with cystic fibrosis. Radiology 283(1), 242–251 (2017).
    • 25. Baues M, Dasgupta A, Ehling J et al. Fibrosis imaging: current concepts and future directions. Adv. Drug Deliv. Rev. 121, 9–26 (2017).
    • 26. Travis WD, Costabel U, Hansell DM et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 188(6), 733–748 (2013).
    • 27. Scherer PM, Chen DL. Imaging pulmonary inflammation. J. Nucl. Med. 57(11), 1764–1770 (2016).
    • 28. Colombi D, Dinkel J, Weinheimer O et al. Visual vs fully automatic histogram-based assessment of idiopathic pulmonary fibrosis (IPF) progression using sequential multidetector computed tomography (MDCT). PLOS ONE 10(6), e0130653 (2015).
    • 29. Gould G, Redpath A, Ryan M et al. Parenchymal emphysema measured by CT lung density correlates with lung function in patients with bullous disease. Eur. Respir. J. 6(5), 698–704 (1993).
    • 30. Maldonado F, Moua T, Rajagopalan S et al. Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur. Respir. J. 43(1), 204–212 (2014).
    • 31. Myall KJ, Mukherjee B, Castanheira AM et al. Persistent post–COVID-19 interstitial lung disease. An observational study of corticosteroid treatment. Ann. Am. Thorac. Soc. 18(5), 799–806 (2021).
    • 32. Perelas A, Silver RM, Arrossi AV, Highland KB. Systemic sclerosis-associated interstitial lung disease. Lancet Respir. Med. 8(3), 304–320 (2020).
    • 33. Koyama H, Ohno Y, Yamazaki Y et al. Quantitatively assessed CT imaging measures of pulmonary interstitial pneumonia: effects of reconstruction algorithms on histogram parameters. Eur. J. Radiol. 74(1), 142–146 (2010).
    • 34. Baumann U, Routes JM, Soler-Palacín P, Jolles S. The lung in primary immunodeficiencies: new concepts in infection and inflammation. Front. Immunol. 9, 1837 (2018).
    • 35. Romei C, Turturici L, Tavanti L et al. The use of chest magnetic resonance imaging in interstitial lung disease: a systematic review. Eur. Resp. Rev. 27(150), 180062 (2018).
    • 36. Jolles S, Carne E, Brouns M et al. FDG PET-CT imaging of therapeutic response in granulomatous lymphocytic interstitial lung disease (GLILD) in common variable immunodeficiency (CVID). Clin. Exp. Immunol. 187(1), 138–145 (2017).
    • 37. Withana NP, Ma X, Mcguire HM et al. Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes. Sci. Rep. 6(1), 1–10 (2016).
    • 38. Reubi JC, Schär J-C, Waser B et al. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med. 27(3), 273–282 (2000).
    • 39. Chianelli M, Mather S, Martin-Comin J, Signore A. Radiopharmaceuticals for the study of inflammatory processes: a review. Nucl. Med. Commun. 18(5), 437–455 (1997).
    • 40. Bondue B, Sherer F, Van Simaeys G et al. PET/CT with 18F-FDG–and 18F-FBEM–labeled leukocytes for metabolic activity and leukocyte recruitment monitoring in a mouse model of pulmonary fibrosis. J. Nucl. Med. 56(1), 127–132 (2015).
    • 41. Désogère P, Tapias LF, Hariri LP et al. Type I collagen–targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Sci. Transl. Med. 9(384), eaaf4696 (2017).
    • 42. Marini TJ, Rubens DJ, Zhao YT et al. Lung ultrasound: the essentials. Radiol. Cardiothorac. Imaging 3(2), e200564 (2021).
    • 43. Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(4), 329–345 (2013).
    • 44. Bokor D, Chambers JB, Rees PJ, Mant TG, Luzzani F, Spinazzi A. Clinical safety of SonoVue, a new contrast agent for ultrasound imaging, in healthy volunteers and in patients with chronic obstructive pulmonary disease. Invest. Radiol. 36(2), 104–109 (2001).
    • 45. Ntziachristos V. Optical imaging of molecular signatures in pulmonary inflammation. Proc. Am. Thorac. Soc. 6(5), 416–418 (2009). • Quantitative optical imaging for in vivo lung inflammation.
    • 46. Xu W, Wang D, Tang BZ. NIR-II AIEgens: a win-win integration towards bioapplications. Angew Chem. Int. Ed. Engl. 60(14), 7476–7487 (2021).
    • 47. Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale 11(3), 799–819 (2019).
    • 48. Kumar NA, Anand BSS, Krishnamurthy G. Nanomaterials for medical imaging and in vivo sensing Springer series in biomaterials science and engineering. Nanomater. Biomed. Appl. 16 (2021).
    • 49. Omlor AJ, Nguyen J, Bals R, Dinh QT. Nanotechnology in respiratory medicine. Respir. Res. 16, 64 (2015).
    • 50. Da Silva AL, Cruz FF, Rocco PRM, Morales MM. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys. Rev. 9(5), 793–803 (2017).
    • 51. Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov. Today 20(3), 380–389 (2015).
    • 52. Paranjpe M, Muller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int. J. Mol. Sci. 15(4), 5852–5873 (2014).
    • 53. Fromen CA, Rahhal TB, Robbins GR et al. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine 12(3), 677–687 (2016).
    • 54. Costa A, Pinheiro M, Magalhaes J et al. The formulation of nanomedicines for treating tuberculosis. Adv. Drug Deliv. Rev. 102, 102–115 (2016).
    • 55. Shukla SD, Swaroop Vanka K, Chavelier A et al. Chronic respiratory diseases: an introduction and need for novel drug delivery approaches. In: Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems. Kamal Dua PMHWilliams KA (Eds). Elsevier Inc., Cambridge, MA, USA, 1–31 (2020).
    • 56. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 56(6), 600–612 (2003).
    • 57. Luo MX, Hua S, Shang QY. Application of nanotechnology in drug delivery systems for respiratory diseases (review). Mol. Med. Rep. 23(5), 325 (2021).
    • 58. Liu C, Jiang X, Gan Y, Yu M. Engineering nanoparticles to overcome the mucus barrier for drug delivery: design, evaluation and state-of-the-art. Med. Drug Discov. 12, 100110 (2021). • Discusses the fate of nanoparticles bypassing the lung barriers.
    • 59. Ensign LM, Henning A, Schneider CS et al. Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Mol. Pharm. 10(6), 2176–2182 (2013).
    • 60. Li LD, Crouzier T, Sarkar A, Dunphy L, Han J, Ribbeck K. Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier. Biophys. J. 105(6), 1357–1365 (2013).
    • 61. Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(6), 842–871 (2016).
    • 62. Aillon KL, El-Gendy N, Dennis C, Norenberg JP, McDonald J, Berkland C. Iodinated nanoclusters as an inhaled computed tomography contrast agent for lung visualization. Mol. Pharm. 7(4), 1274–1282 (2010).
    • 63. Badea CT, Athreya KK, Espinosa G et al. Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLOS ONE 7(4), e34496 (2012).
    • 64. Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 34(2), 470–480 (2013). •• Lung cancer computerized tomography imaging with a targeted nanoprobe with ligand.
    • 65. Haage P, Karaagac S, Adam G, Spuntrup E, Pfeffer J, Gunther RW. Gadolinium containing contrast agents for pulmonary ventilation magnetic resonance imaging: preliminary results. Invest. Radiol. 37(3), 120–125 (2002).
    • 66. Pellico J, Lechuga-Vieco AV, Almarza E et al. In vivo imaging of lung inflammation with neutrophil-specific (68)Ga nano-radiotracer. Sci. Rep. 7(1), 13242 (2017).
    • 67. Bianchi A, Lux F, Tillement O, Cremillieux Y. Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-DOTA-based nanoparticles. Magn. Reson. Med. 70(5), 1419–1426 (2013).
    • 68. Neuwelt A, Sidhu N, Hu CA, Mlady G, Eberhardt SC, Sillerud LO. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am. J. Roentgenol. 204(3), W302–313 (2015).
    • 69. Al Faraj A, Sultana Shaik A, Pureza MA, Alnafea M, Halwani R. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI. PLOS ONE 9(3), e90829 (2014).
    • 70. Liu Y, Gunsten SP, Sultan DH et al. PET-based imaging of chemokine receptor 2 in experimental and disease-related lung inflammation. Radiology 283(3), 758–768 (2017).
    • 71. Demura Y, Tsuchida T, Uesaka D et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography for diagnosing disease activity and monitoring therapeutic response in patients with pulmonary mycobacteriosis. Eur. J. Nucl. Med. Mol. Imaging 36(4), 632–639 (2009).
    • 72. Dufort S, Bianchi A, Henry M et al. Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 11(2), 215–221 (2015).
    • 73. Zhou J, Zhang Q, Zhang Q, Zhang Z. Nanobubble lung ultrasound application in the treatment of neonatal pneumonia. J. Nanosci. Nanotechnol. 21(2), 1244–1249 (2021).
    • 74. Wang B, Liu P, Huang H et al. Carbon dots up-regulate heme oxygenase-1 expression towards acute lung injury therapy. J. Mater. Chem. B 9(43), 9005–9011 (2021).
    • 75. Chenthamara D, Subramaniam S, Ramakrishnan SG et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 20 (2019).
    • 76. Zompatori M, Ciccarese F, Fasano L. Overview of current lung imaging in acute respiratory distress syndrome. Eur. Respir. Rev. 23(134), 519–530 (2014).
    • 77. Purandare NC, Rangarajan V. Imaging of lung cancer: implications on staging and management. Indian J. Radiol. Imaging 25(2), 109–120 (2015).
    • 78. Tsang VTC, Li X, Wong TTW. A review of endogenous and exogenous contrast agents used in photoacoustic tomography with different sensing configurations. Sensors (Basel) 20(19), 5595 (2020).
    • 79. Amlan Chakraborty CS. Functionalized Nanoparticles in Pulmonary Disease Diagnosis. Academic Press, London, UK. doi:10.1016/B978-0-12-820658-4.00014-5303-321 (2020).
    • 80. Bayram H, Suer H. Liposomes as potential nanocarriers for theranostic applications in chronic inflammatory lung diseases. Biomed. Biotechnol. Res. J. 1(1), 1–8 (2017).
    • 81. Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2(4), 282–289 (2010).
    • 82. Inui S, Fujikawa A, Jitsu M et al. Chest CT findings in cases from the cruise ship diamond princess with coronavirus disease (COVID-19). Radiol. Cardiothorac. Imaging 2(2), e200110 (2020).
    • 83. Hollings N, Shaw P. Diagnostic imaging of lung cancer. Eur. Respir. J. 19(4), 722–742 (2002).
    • 84. Dorsey JF, Sun L, Joh DY et al. Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization. Transl. Cancer Res. 2(4), 280–291 (2013).
    • 85. Lodhi MS, Khan MT, Aftab S, Samra ZQ, Wang H, Wei DQ. A novel formulation of theranostic nanomedicine for targeting drug delivery to gastrointestinal tract cancer. Cancer Nanotechnol. 12(1), 26 (2021).
    • 86. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new x-ray contrast agent. Br. J. Radiol. 79(939), 248–253 (2006).
    • 87. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem. Rev. 113(3), 1641–1666 (2013).
    • 88. Behzadi S, Serpooshan V, Tao W et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46(14), 4218–4244 (2017).
    • 89. Geiser M. Morphological aspects of particle uptake by lung phagocytes. Microsc. Res. Tech. 57(6), 512–522 (2002).
    • 90. Gosens I, Post JA, De La Fonteyne LJ et al. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol. 7(1), 37 (2010).
    • 91. Geiser M, Quaile O, Wenk A et al. Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part Fibre Toxicol. 10, 19 (2013).
    • 92. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019).
    • 93. Srinivasan M, Rajabi M, Mousa SA. Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials (Basel) 5(4), 1690–1703 (2015).
    • 94. Wang L, Rao Y, Liu X et al. Administration route governs the therapeutic efficacy, biodistribution and macrophage targeting of anti-inflammatory nanoparticles in the lung. J. Nanobiotechnol. 19(1), 56 (2021).
    • 95. Silvestri A, Zambelli V, Ferretti AM, Salerno D, Bellani G, Polito L. Design of functionalized gold nanoparticle probes for computed tomography imaging. Contrast Media Mol. Imaging 11(5), 405–414 (2016).
    • 96. Noriega-Luna B, Godínez LA, Rodríguez FJ et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J. Nanomater. 2014, 1–19 (2014).
    • 97. Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol. Imaging 9(1), 37–52 (2014).
    • 98. Karakoti AS, Monteiro-Riviere NA, Aggarwal R et al. Nanoceria as antioxidant: synthesis and biomedical applications. JOM (1989) 60(3), 33–37 (2008).
    • 99. Naha PC, Hsu JC, Kim J et al. Dextran-coated cerium oxide nanoparticles: a computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease. ACS Nano 14(8), 10187–10197 (2020).
    • 100. Bhushan B, Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J. Mater. Chem. B 3(24), 4843–4852 (2015).
    • 101. Arya A, Sethy NK, Singh SK, Das M, Bhargava K. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int. J. Nanomed. 8, 4507–4520 (2013).
    • 102. Oztas E, Abudayyak M, Aykanat B, Can Z, Baram E, Ozhan G. Bismuth oxide nanoparticles induced oxidative stress-related inflammation in SH-SY5Y cell line. Istanbul J. Pharm. doi:10.26650/IstanbulJPharm.2019.19020 (2019).
    • 103. Manuja A, Kumar B, Kumar R et al. Metal/metal oxide nanoparticles: toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol. Rep. 8, 1970–1978 (2021).
    • 104. Porra L, Degrugilliers L, Broche L et al. Quantitative imaging of regional aerosol deposition, lung ventilation and morphology by synchrotron radiation CT. Sci. Rep. 8(1), 3519 (2018).
    • 105. Romei C, Turturici L, Tavanti L et al. The use of chest magnetic resonance imaging in interstitial lung disease: a systematic review. Eur. Respir. Rev. 27(150), 180062 (2018).
    • 106. Lodhi MS, Shaheen A, Khan MT, Shafiq MI, Samra ZQ, Wei DQ. A novel method of affinity purification and characterization of polygalacturonase of Aspergillus flavus by galacturonic acid engineered magnetic nanoparticle. Food Chem. 372, 131317 (2022).
    • 107. Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI contrast agents: classification and application (review). Int. J. Mol. Med. 38(5), 1319–1326 (2016).
    • 108. Falk Delgado A, Van Westen D, Nilsson M et al. Diagnostic value of alternative techniques to gadolinium-based contrast agents in MR neuroimaging – a comprehensive overview. Insights Imaging 10(1), 84 (2019).
    • 109. Lodhi MS, Khalid F, Khan MT et al. A novel method of magnetic nanoparticles functionalized with anti-folate receptor antibody and methotrexate for antibody mediated targeted drug delivery. Molecules 27(1), 261 (2022). •• Engineering magnetic nanoparticles with antibodies for targeted nanomedicine.
    • 110. Fisher MJ, Williamson DJ, Burslem GM et al. Trivalent Gd-DOTA reagents for modification of proteins. RSC Adv. 5(116), 96194–96200 (2015).
    • 111. Bitar R, Leung G, Perng R et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 26(2), 513–537 (2006).
    • 112. Ma YJ, Jang H, Chang EY et al. Ultrashort echo time (UTE) magnetic resonance imaging of myelin: technical developments and challenges. Quant. Imaging Med. Surg. 10(6), 1186–1203 (2020).
    • 113. Kaur G, Narang RK, Rath G, Goyal AK. Advances in pulmonary delivery of nanoparticles. Artif. Cells Blood Substit. Immobil. Biotechnol. 40(1-2), 75–96 (2012).
    • 114. Rastogi A, Yadav K, Mishra A et al. Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems. Nanotechnol. Rev. 11(1), 544–574 (2022).
    • 115. Huang Y, Hsu JC, Koo H, Cormode DP. Repurposing ferumoxytol: diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics 12(2), 796–816 (2022).
    • 116. Moller W, Felten K, Sommerer K et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am. J. Respir. Crit. Care Med. 177(4), 426–432 (2008).
    • 117. Chakraborty A, Royce SG, Selomulya C, Plebanski M. A novel approach for non-invasive lung imaging and targeting lung immune cells. Int. J. Mol. Sci. 21(5), 1613 (2020).
    • 118. Liu D, Chen Y, Li F et al. Sinapultide-loaded microbubbles combined with ultrasound to attenuate lipopolysaccharide-induced acute lung injury in mice. Drug Des. Devel. Ther. 14, 5611–5622 (2020). •• Pulmonary surfactant-loaded microbubbles for lung injury diseases.
    • 119. Feshitan JA, Legband ND, Borden MA, Terry BS. Systemic oxygen delivery by peritoneal perfusion of oxygen microbubbles. Biomaterials 35(9), 2600–2606 (2014).
    • 120. Sugiyama MG, Mintsopoulos V, Raheel H et al. Lung ultrasound and microbubbles enhance aminoglycoside efficacy and delivery to the lung in Escherichia coli-induced pneumonia and acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 198(3), 404–408 (2018).
    • 121. Helfield B, Zou Y, Matsuura N. Acoustically-stimulated nanobubbles: opportunities in medical ultrasound imaging and therapy. Front. Physics 9, 654374 (2021).
    • 122. Paknahad AA, Kerr L, Wong DA, Kolios MC, Tsai SSH. Biomedical nanobubbles and opportunities for microfluidics. RSC Adv. 11(52), 32750–32774 (2021). • Addresses the development of a microfluidic toolbox-based nanobubble platform.
    • 123. Zhang H, Ji Z, Xia T et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5), 4349–4368 (2012).
    • 124. Kashefi A, Kuo J, Shelton DK. Molecular imaging in pulmonary diseases. AJR Am. J. Roentgenol. 197(2), 295–307 (2011).
    • 125. Portnoy E, Lecht S, Lazarovici P, Danino D, Magdassi S. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine 7(4), 480–488 (2011).
    • 126. Desu HR, Wood GC, Thoma LA. Non-invasive detection of lung inflammation by near-infrared fluorescence imaging using bimodal liposomes. J. Fluoresc. 26(1), 241–253 (2016).
    • 127. Elhissi A. Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr. Pharm. Des. 23(3), 362–372 (2017).
    • 128. D'angelo I, Conte C, Miro A, Quaglia F, Ungaro F. Pulmonary drug delivery: a role for polymeric nanoparticles? Curr. Top. Med. Chem. 15(4), 386–400 (2015).
    • 129. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996).
    • 130. Gil HM, Price TW, Chelani K, Bouillard JG, Calaminus SDJ, Stasiuk GJ. NIR-quantum dots in biomedical imaging and their future. iScience 24(3), 102189 (2021).
    • 131. Nikazar S, Sivasankarapillai VS, Rahdar A, Gasmi S, Anumol PS, Shanavas MS. Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophys. Rev. 12(3), 703–718 (2020).
    • 132. Roberts JR, Antonini JM, Porter DW et al. Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Part Fibre Toxicol. 10, 5 (2013).
    • 133. Liu SY, Yan AM, Guo WY et al. Human neutrophil elastase activated fluorescent probe for pulmonary diseases based on fluorescence resonance energy transfer using CdSe/ZnS quantum dots. ACS Nano 14(4), 4244–4254 (2020).
    • 134. Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: a review. Biomed. Pharmacother. 132, 110834 (2020).
    • 135. Weiss M, Fan J, Claudel M, Lebeau L, Pons F, Ronzani C. Combined in vitro and in vivo approaches to propose a putative adverse outcome pathway for acute lung inflammation induced by nanoparticles: a study on carbon dots. Nanomaterials (Basel) 11(1), 180 (2021).
    • 136. Narasimhan AK, Lakshmi BS, Santra TS, Rao MSR, Krishnamurthi G. Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Adv. 7(85), 53822–53829 (2017).
    • 137. Cao J, Zhu B, Zheng K et al. Recent progress in NIR-II contrast agent for biological imaging. Front. Bioeng. Biotechnol. 7, 487 (2020).
    • 138. Basu S, Zhuang H, Torigian DA, Rosenbaum J, Chen W, Alavi A. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin. Nucl. Med. 39(2), 124–145 (2009).
    • 139. Majumdar S, Murphy PM. Chemokine regulation during epidemic coronavirus infection. Front. Pharmacol. 11, 600369 (2020).
    • 140. Chen L, Deng H, Cui H et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6), 7204–7218 (2017).
    • 141. Prasher P, Sharma M, RW P et al. Can dextran-based nanoparticles mitigate inflammatory lung diseases? Future Med. Chem. doi:10.4155/fmc-2021-0218 (2021).
    • 142. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354(6), 610–621 (2006).
    • 143. Corcoran TE. Imaging in aerosol medicine. Respir. Care 60(6), 850–857 (2015).
    • 144. Zhang X, Liu X, Guo Y, Wu FG. Strategies for visualizing inflammation. View 2(1), 20200025 (2020).
    • 145. Pellico J, Lechuga-Vieco AV, Almarza E et al. In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Sci. Rep. 7(1), 13242 (2017).
    • 146. Chen X, Song J, Chen X, Yang H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 48(11), 3073–3101 (2019).
    • 147. Dai X, Cheng K, Zhao W, Xing L. High-speed x-ray-induced luminescence computed tomography. J. Biophotonics 13(9), e202000066 (2020).
    • 148. Li Y, Samant P, Cochran C et al. The feasibility study of XACT imaging for characterizing osteoporosis. Med. Phys. doi:10.1002/mp.15906 (2022).
    • 149. Wu S, Li Y, Ding W, Xu L, Ma Y, Zhang L. Recent advances of persistent luminescence nanoparticles in bioapplications. Nanomicro. Lett. 12(1), 70 (2020).
    • 150. Pogue BW, Zhang R, Cao X et al. Review of in vivo optical molecular imaging and sensing from x-ray excitation. J. Biomed. Opt. 26(1), 010902 (2021).
    • 151. Kamkaew A, Chen F, Zhan Y, Majewski RL, Cai W. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano 10(4), 3918–3935 (2016).
    • 152. Pei P, Chen Y, Sun C et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16(9), 1011–1018 (2021).
    • 153. Narasimhan AK, Balasubramanian SL, Krishnamurthi G. Influence of europium (Eu) doped tantalum oxide nanoparticles (TaOx NPs): a potential contrast agent. Mater. Lett. 300, 130214 (2021). • Metal-oxide-doped nanoparticles for x-ray-excited optical imaging.
    • 154. Parekh M, Donuru A, Balasubramanya R, Kapur S. Review of the chest CT differential diagnosis of ground-glass opacities in the COVID era. Radiology 297(3), E289–E302 (2020).
    • 155. Agrebi S, Larbi A. Use of artificial intelligence in infectious diseases. In: Artificial Intelligence in Precision Health. Stacy Masucci (Ed.)., NY, USA, 415–438 (2020).
    • 156. Burki TK. The role of AI in diagnosing lung diseases. Lancet Respir. Med. 7(12), 1015–1016 (2019).
    • 157. Ciompi F, Chung K, Van Riel SJ et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep. 7, 46479 (2017).
    • 158. Abadia AF, Yacoub B, Stringer N et al. Diagnostic accuracy and performance of artificial intelligence in detecting lung nodules in patients with complex lung disease: a noninferiority study. J. Thorac. Imaging 37(3), 154–161 (2022).
    • 159. San Jose Estepar R. Artificial intelligence in functional imaging of the lung. Br. J. Radiol. 95(1132), 20210527 (2022).
    • 160. Harmon SA, Sanford TH, Xu S et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 11(1), 4080 (2020).
    • 161. Feng Y, Wang Y, Zeng C, Mao H. Artificial intelligence and machine learning in chronic airway diseases: focus on asthma and chronic obstructive pulmonary disease. Int. J. Med. Sci. 18(13), 2871–2889 (2021).
    • 162. Makela K, Mayranpaa MI, Sihvo HK et al. Artificial intelligence identifies inflammation and confirms fibroblast foci as prognostic tissue biomarkers in idiopathic pulmonary fibrosis. Hum. Pathol. 107, 58–68 (2021).
    • 163. Espinoza JL, Dong LT. Artificial intelligence tools for refining lung cancer screening. J. Clin. Med. 9(12), 3860 (2020).
    • 164. Reis M, Gusev F, Taylor NG et al. Machine-learning-guided discovery of (19)F MRI agents enabled by automated copolymer synthesis. J. Am. Chem. Soc. 143(42), 17677–17689 (2021). • Machine-learning-guided material development.