We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Micro- and nanotechnological delivery platforms for treatment of dysbiosis-related inflammatory bowel disease

    Dingpei Long

    *Author for correspondence:

    E-mail Address: dlong26@gsu.edu

    Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA

    &
    Didier Merlin

    Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA

    Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA

    Published Online:https://doi.org/10.2217/nnm-2021-0167
    Free first page

    References

    • 1. Corridoni D, Arseneau KO, Cominelli F. Inflammatory bowel disease. Immunol. Lett. 161(2), 231–235 (2014).
    • 2. Melmed GY, Targan SR. Future biologic targets for IBD: potentials and pitfalls. Nat. Rev. Gastro. Hepat. 7(2), 110–117 (2010).
    • 3. D'Haens GR, Panaccione R, Higgins PDR et al. The London position statement of the World Congress of Gastroenterology on biological therapy for IBD with the European Crohn's and Colitis Organization: When to start, when to stop, which drug to choose, and how to predict response? Am. J. Gastroenterol. 106(2), 199–212 (2011).
    • 4. Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in immune-mediated inflammatory diseases. Front. Microbiol. 7, 1081 (2016).
    • 5. Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 152(2), 327–339 (2017).
    • 6. Sussman D, Santaolalla R, Strobel S, Dheer R, Abreu MT. Cancer in inflammatory bowel disease: lessons from animal models. Curr. Opin. Gastroenterol. 28(4), 327 (2012).
    • 7. Khan KJ, Ullman TA, Ford AC et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am. J. Gastroenterol. 106(4), 661–673 (2011).
    • 8. Wang SL, Wang ZR, Yang CQ. Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease. Exp. Ther. Med. 4(6), 1051–1056 (2012).
    • 9. Sartor RB, Mazmanian SK. Intestinal microbes in inflammatory bowel diseases. Am. J. Gastroenterol. Suppl. 1(1), 15–21 (2012).
    • 10. Eckburg PB, Bik EM, Bernstein CN et al. Diversity of the human intestinal microbial flora. Science 308(5728), 1635–1638 (2005).
    • 11. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 157(1), 121–141 (2014).
    • 12. Frank DN, Amand ALS, Feldman RA et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104(34), 13780–13785 (2007).
    • 13. Papa E, Docktor M, Smillie C et al. Noninvasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE 7(6), e39242 (2012).
    • 14. Newman KM, Vaughn BP. Efficacy of intestinal microbiota transplantation in ulcerative colitis: a review of current literature and knowledge. Minerva Gastroenterol. Dietol. 65(4), 268–279 (2019).
    • 15. Choi HH, Cho YS. Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clin. Endosc. 49(3), 257 (2016).
    • 16. Yeung TW, Üçok EF, Tiani KA, McClements DJ, Sela DA. Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Front. Microbiol. 7, 494 (2016).
    • 17. Ding WK, Shah NP. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 74(2), M100–M107 (2009).
    • 18. Teng Y, Ren Y, Sayed M et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 24(5), 637–652 (2018).
    • 19. Liu S, da Cunha AP, Rezende RM et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19(1), 32–43 (2016).
    • 20. Tomkovich S, Gharaibeh RZ, Dejea CM et al. Human colon mucosal biofilms and murine host communicate via altered mRNA and microRNA expression during cancer. mSystems 5(1), e00451–19 (2020).
    • 21. Qiu K, Durham PG, Anselmo AC. Inorganic nanoparticles and the microbiome. Nano Res. 11(10), 4936–4954 (2018).
    • 22. Ghebretatios M, Schaly S, Prakash S. Nanoparticles in the food industry and their impact on human gut microbiome and diseases. Int. J. Mol. Sci. 22(4), 1942 (2021).
    • 23. Pluznick JL, Protzko RJ, Gevorgyan H et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110(11), 4410–4415 (2013).
    • 24. Hsiao EY, McBride SW, Hsien S et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7), 1451–1463 (2013).
    • 25. Johnson SR, Lange BM. Open-access metabolomics databases for natural product research: present capabilities and future potential. Front. Bioeng. Biotechnol. 3, 22 (2015).
    • 26. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 15(7), 473 (2016).
    • 27. Bernstein CN, Fried M, Krabshuis JH et al. World gastroenterology organization practice guidelines for the diagnosis and management of IBD in 2010. Inflamm. Bowel Dis. 16(1), 112–124 (2010).
    • 28. Stallmach A, Hagel S, Bruns T. Adverse effects of biologics used for treating IBD. Best Pract. Res. Clin. Gastroenterol. 24(2), 167–182 (2010).
    • 29. Gou S, Huang Y, Wan Y et al. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 212, 39–54 (2019).
    • 30. Li C, Zhao Y, Cheng J et al. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv. Sci. 6(18), 1900610 (2019).
    • 31. Lee Y, Sugihara K, Gillilland MG et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19(1), 118–126 (2020).