We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanotechnology-assisted microfluidic systems: from bench to bedside

    Navid Rabiee

    Department of Chemistry, Sharif University of Technology, Tehran, Iran

    ,
    Sepideh Ahmadi

    Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

    Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

    ,
    Yousef Fatahi

    Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

    Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

    ,
    Mohammad Rabiee

    Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

    ,
    Mojtaba Bagherzadeh

    Department of Chemistry, Sharif University of Technology, Tehran, Iran

    ,
    Rassoul Dinarvand

    Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

    Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

    ,
    Babak Bagheri

    Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea

    ,
    Payam Zarrintaj

    School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA

    ,
    Mohammad Reza Saeb

    Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France

    &
    Thomas J Webster

    *Author for correspondence:

    E-mail Address: th.webster@neu.edu

    Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA

    Published Online:https://doi.org/10.2217/nnm-2020-0353

    With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next generation of nanomaterial-based microfluidic systems, the latest in their commercialization success and failure and highlight the value of these devices both in industry and in the laboratory.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ahmadi S, Kamaladini H, Haddadi F, Sharifmoghadam MR. Thiol-capped gold nanoparticle biosensors for rapid and sensitive visual colorimetric detection of klebsiella pneumoniae. J. Fluoresc. 28(4), 987–998 (2018).
    • 2. Maghsoudi S, Shahraki BT, Rabiee N et al. Burgeoning polymer nano blends for improved controlled drug release: a review. Int. J. Nanomed. 15, 4363 (2020). • This is a great review article regarding the use of microfluidics/nanofluidics in different drug/gene delivery and synthesis applications.
    • 3. Rabiee N, Yaraki MT, Garakani SM et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 232, 119707 (2020).
    • 4. Ghadiri AM, Rabiee N, Bagherzadeh M et al. Green synthesis of CuO-and Cu2O-NPs in assistance with high-gravity: the flowering of nanobiotechnology. Nanotechnology 31(42), 425101 (2020).
    • 5. Kiani M, Bagherzadeh M, Meghdadi S et al. Development of a novel carboxamide-based off–on switch fluorescence sensor: Hg 2+, Zn 2+ and Cd 2+. N. J. Chem. 44(27), 11841–11852 (2020).
    • 6. Yang RJ, Chang CC, Chen JK, Pan YJ. Microfluidic sample manipulation. In: Encyclopedia of Microfluidics and Nanofluidics. Li D (Ed.). Springer, MA, USA, 1189–1194 (2008).
    • 7. Maia FR, Reis RL, Oliveira JM. Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. Nanomedicine 24, 102139 (2020).
    • 8. Ahmadi S, Rabiee N, Bagherzadeh M et al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 34, 100914 (2020). • This is a great review article regarding the use of microfluidics/nanofluidics in different drug/gene delivery and synthesis applications.
    • 9. Rabiee N, Bagherzadeh M, Ghasemi A et al. Point-of-use rapid detection of sars-cov-2: nanotechnology-enabled solutions for the covid-19 pandemic. Int. J. Mol. Sci. 21(14), 5126 (2020).
    • 10. Kiani M, Rabiee N, Bagherzadeh M et al. High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomedicine 30, 102297 (2020).
    • 11. Chandrasekaran A, Abduljawad M, Moraes C. Have microfluidics delivered for drug discovery? Expert. Opin. Drug. Discov. 11(8), 745–748 (2016). •• This is a great paper that describes different commercialization and applications of microfluidics.
    • 12. Nasr SM, Rabiee N, Hajebi S et al. Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine. Int. J. Nanomed. 15, 4205 (2020).
    • 13. Hasanzadeh A, Jahromi MaM, Abdoli A et al. Photoluminescent carbon quantum dot/poly-l-lysine core-shell nanoparticles: a novel candidate for gene delivery. J. Drug Deliv. Sci. Technol. doi:10.1016/j.jddst.2020.102118 (2020) (In Press).
    • 14. Kiani M, Rabiee N, Bagherzadeh M et al. Improved green biosynthesis of chitosan decorated Ag-and Co3O4-nanoparticles: a relationship between surface morphology, Photocatalytic and biomedical applications. Nanomedicine doi: 10.1016/j.nano.2020.102331 (2020) (Epub ahead of print).
    • 15. Kharati M, Foroutanparsa S, Rabiee M, Salarian R, Rabiee N, Rabiee G. Early diagnosis of multiple sclerosis based on optical and electrochemical biosensors: comprehensive perspective. Curr. Anal. Chem. 16(5), 557–569 (2020).
    • 16. Su H, Li S, Jin Y et al. Nanomaterial-based biosensors for biological detections. Adv. Health Care Technol. 3, 19–29 (2017).
    • 17. Shahraki BT, Maghsoudi S, Fatahi Y et al. The flowering of mechanically interlocked molecules: novel approaches to the synthesis of rotaxanes and catenanes. Coord. Chem. Rev. 423, 213484 (2020).
    • 18. Nik AB, Zare H, Razavi SS et al. Smart drug delivery: capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater. 299, 110115 (2020).
    • 19. Rabiee N, Bagherzadeh M, Tavakolizadeh M, Pourjavadi A, Atarod M, Webster TJ. Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. Int. J. Polymer. Mater. Polymer. Biomater. doi: 10.1080/00914037.2020.1809405 (2020) (Epub ahead of print).
    • 20. Rabiee N, Ahmadvand S, Ahmadi S et al. Carbosilane dendrimers: drug and gene delivery applications. J. Drug Deliv. Sci. Technol. 59, 101879 (2020).
    • 21. Ghasemi A, Rabiee N, Ahmadi S et al. Optical assays based on colloidal inorganic nanoparticles. Analyst 143(14), 3249–3283 (2018).
    • 22. Arduini F, Cinti S, Scognamiglio V, Moscone D. Nanomaterial-based sensors. In: Handbook of Nanomaterials in Anal. Chem. Hussain CM (Ed.). Elsevier, doi:10.1016/B978-0-12-816699-4.00013-X, 329–359 (2020).
    • 23. Rabiee N, Bagherzadeh M, Ghadiri AM et al. High-gravity-assisted green synthesis of NiO-NPs anchored on the surface of biodegradable nanobeads with potential biomedical applications. J. Biomed. Nanotechnol. 16(4), 520–530 (2020).
    • 24. Rabiee N, Bagherzadeh M, Kiani M et al. High gravity-assisted green synthesis of ZnO nanoparticles via allium ursinum: conjoining nanochemistry to neuroscience. Nano Express 1(2), 020025 (2020).
    • 25. Rabiee N, Bagherzadeh M, Ghadiri AM et al. Green synthesis of ZnO NPs via salvia hispanica: evaluation of potential antioxidant, antibacterial, mammalian cell viability, H1N1 influenza virus inhibition and photocatalytic activities. J. Biomed. Nanotechnol. 16(4), 456–466 (2020).
    • 26. Choi S, Goryll M, Sin LYM, Wong PK, Chae J. Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluidics Nanofluidics 10(2), 231–247 (2011).
    • 27. Kharati M, Rabiee M, Rostami-Nejad M et al. Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomed. Phys. Eng. Express 6(5), 055015 (2020).
    • 28. Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM. Rosmarinus officinalis directed palladium nanoparticle synthesis: Investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv. Powder Technol. 31(4), 1402–1411 (2020).
    • 29. Nasseri B, Turk M, Kosemehmetoglu K et al. The pimpled gold nanosphere: A superior candidate for plasmonic photothermal therapy. Int. J. Nanomed. 15, 2903 (2020).
    • 30. Rabiee N, Bagherzadeh M, Kiani M et al. Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int. J. Nanomed. 15, 3983–3999 (2020).
    • 31. Nasimi P, Haidari M. Medical use of nanoparticles: drug delivery and diagnosis diseases. Int. J. Green Nanotechnol. 1, (2013). https://doi.org/10.1177/1943089213506978
    • 32. Jarrige V, Nieuwenhuis JH, Van Son JPHF, Martens MFWC, Vissers JLM. A fast intraoperative PTH point-of-care assay on the philips handheld magnotech system. Langenbecks Arch. Chir. 396(3), 337–343 (2011).
    • 33. Hajebi S, Mohammadi Nasr S, Rabiee N et al. Bioresorbable composite polymeric materials for tissue engineering applications. Int. J. Polymer. Mater. Polymer. Biomater. 1–15 (2020).
    • 34. Rabiee N, Ahmadi S, Arab Z et al. Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review. Int. J. Nanomed. 15, 4237 (2020).
    • 35. Rabiee N, Rabiee M, Bagherzadeh M, Rezaei N. COVID-19 and picotechnology: potential opportunities. Med. Hypotheses 144, 109917 (2020).
    • 36. Ahmadi S, Rabiee N, Fatahi Y et al. Controlled gene delivery systems: nanomaterials and chemical approaches. J. Biomed. Nanotechnol. 16(5), 553–582 (2020).
    • 37. Giacomini KM, Huang S-M, Tweedie DJ et al. Membrane transporters in drug development. Nat. Rev. 9(3), 215 (2010).
    • 38. Kinch MS, Haynesworth A, Kinch SL, Hoyer D. An overview of FDA-approved new molecular entities: 1827–2013. Drug Discov. Today 19(8), 1033–1039 (2014).
    • 39. Ozsvári B, Lamb R, Lisanti MP. Repurposing of FDA-approved drugs against cancer–Focus on metastasis. Aging (Albany NY) 8(4), 567 (2016).
    • 40. Mullard A. 2013 FDA drug approvals. Nat. Rev. Drug Discov. 13(2), 85–89 (2014).
    • 41. Munos B. Lessons from 60 years of pharmaceutical innovation. Nat. Rev. 8(12), 959–968 (2009).
    • 42. Force LM, Abdollahpour I, Advani SM et al. The global burden of childhood and adolescent cancer in 2017: an analysis of the Global Burden of Disease Study 2017. Lancet Oncol. 20(9), 1211–1225 (2019).
    • 43. Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 117, 112–128 (2018). • A complete and comprehensive review article regarding the advantages of microfluidic devices in pathogen detection.
    • 44. Chang AY, Cowling K, Micah AE et al. Past, present, and future of global health financing: a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995–2050. Lancet 393(10187), 2233–2260 (2019).
    • 45. Frank TD, Carter A, Jahagirdar D et al. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV 6(12), e831–e859 (2019).
    • 46. Stanaway JD, Parisi A, Sarkar K et al. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 19(12), 1312–1324 (2019).
    • 47. Hajebi S, Rabiee N, Bagherzadeh M et al. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 92, 1–18 (2019).
    • 48. Rabiee N, Kiani M, Bagherzadeh M, Rabiee M, Ahmadi S. Nanoparticle (NP)-Based Delivery Vehicles. Morgan & Claypool Publishers, Ca, USA, (2019).
    • 49. Romero FA, Jones C, Xu Y, Fenaux M, Halcomb RL. The race to bash NASH: emerging targets and drug development in a complex liver disease. J. Med. Chem. 63(10), 5031–5073 (2020).
    • 50. Ploetz E, Engelke H, Lächelt U, Wuttke S. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv. Funct. Mater. 30(41), 1909062 (2020).
    • 51. Shaikh FA, Kurtys E, Kubassova O, Roettger D. Reporter gene imaging and its role in imaging-based drug development. Drug Discov. Today 25(3), 582–592 (2020).
    • 52. Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab on a Chip 17(14), 2395–2420 (2017).
    • 53. Hansen CE, Lam WA. Clinical implications of single-cell microfluidic devices for hematological disorders. Anal. Chem. 89(22), 11881–11892 (2017).
    • 54. Greenberg HM, Dwyer EM, Hochman JS, Steinberg JS, Echt DS, Peters RW. Interaction of ischaemia and encainide/flecainide treatment: a proposed mechanism for the increased mortality in CAST I. Heart 74(6), 631–635 (1995).
    • 55. Culp DR, Berry I. Merck and the Vioxx debacle: deadly loyalty. J. Civl Rights Econ. Dev. 22(1), 1 (2007).
    • 56. Waxman HA. The lessons of Vioxx – drug safety and sales. N. Engl. J. Med. 352(25), 2576–2578 (2005).
    • 57. Gale KB, Jafek RA, Lambert JC et al. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3(3), 60 (2018).
    • 58. Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: a review. J. Pharm. Anal. 9(4), 238–247 (2019).
    • 59. Balslev S, Jorgensen AM, Bilenberg B et al. Lab-on-a-chip with integrated optical transducers. Lab Chip 6(2), 213–217 (2006).
    • 60. Kim L. Overview of the microfluidic diagnostics commercial landscape. Methods. Mol. Biol. 949, 65–83 (2013).
    • 61. Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 39(3), 1153–1182 (2010).
    • 62. Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 46(11), 2396–2406 (2013).
    • 63. Zhu K, Yu Y, Cheng Y, Tian C, Zhao G, Zhao Y. All-aqueous-phase microfluidics for cell encapsulation. ACS Appl. Mater. Interfaces 11(5), 4826–4832 (2019).
    • 64. Gao R, Lv Z, Mao Y et al. SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers. ACS Sens. 4(4), 938–943 (2019).
    • 65. Gao R, Tian X, Li Q et al. Artificial blood vessel frameworks from 3D printing-based super-assembly as in vitro models for early diagnosis of intracranial aneurysms. Chem. Mater. 32(7), 3188–3198 (2020).
    • 66. Park J, Han DH, Park JK. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip 20(7), 1191–1203 (2020).
    • 67. Gao R, Song X, Zhan C et al. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B Chem. 314, 128081 (2020).
    • 68. Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2010).
    • 69. Huang L, Chen J, Yu Z, Tang D. Self-powered temperature sensor with seebeck effect transduction for photothermal–thermoelectric coupled immunoassay. Anal. Chem. 92(3), 2809–2814 (2020).
    • 70. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12), 2118–2134 (2012).
    • 71. Gao H, Yan C, Wu W, Li J. Application of microfluidic chip technology in food safety sensing. Sensors 20(6), 1792 (2020).
    • 72. Zarrintaj P, Bakhshandeh B, Rezaeian I, Heshmatian B, Ganjali M. A novel electroactive agarose-aniline pentamer platform as a potential candidate for neural tissue engineering. Sci. Rep. 7(1), 1–12 (2017).
    • 73. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12), 2118–2134 (2012).
    • 74. Ranjit Prakash A, Adamia S, Sieben V, Pilarski P, Pilarski LM, Backhouse CJ. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. Sens. Actuators B Chem. 113(1), 398–409 (2006).
    • 75. Mastrangeli M, Millet S, Partners T, Raaij J. Organ-on-chip in development:towards a roadmap for organs-on-chip. ALTEX 36(4), 650–668 (2019).
    • 76. Nilghaz A, Guan L, Tan W, Shen W. Advances of paper-based microfluidics for diagnostics: the original motivation and current status. ACS Sens. 1(12), 1382–1393 (2016).
    • 77. Ahmadi S, Rabiee N, Bagherzadeh M et al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 34, 100914 (2020).
    • 78. Miernicki M, Hofmann T, Eisenberger I, Von Der Kammer F, Praetorius A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14(3), 208–216 (2019).
    • 79. Mcneil SE. Nanotechnology for the biologist. J. Leukoc. Biol. 78(3), 585–594 (2005).
    • 80. El-Sayed A, Kamel M. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. 27(16), 19200–19213 (2020).
    • 81. Zhang J, Misra RDK. Nanomaterials in microfluidics for disease diagnosis and therapy development. Mater. Technol. 34(2), 92–116 (2019).
    • 82. Choi J-H, Lee J, Oh B-K. Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. Biochip J. 10(4), 331–345 (2016).
    • 83. Wang M, Xiao Y, Lin L, Zhu X, Du L, Shi X. A microfluidic chip integrated with hyaluronic acid-functionalized electrospun chitosan nanofibers for specific capture and nondestructive release of CD44-overexpressing circulating tumor cells. Bioconjug. Chem. 29(4), 1081–1090 (2018).
    • 84. Xu T, Yu H, Xu P et al. Real-time enzyme-digesting identification of double-strand DNA in a resonance-cantilever embedded micro-chamber. Lab Chip 14(6), 1206–1214 (2014).
    • 85. Nunna BB, Mandal D, Lee JU et al. Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Converg. 6(1), 3 (2019).
    • 86. Singh N, Rai P, Ali MA et al. A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. J. Mater. Chem. B 7(24), 3826–3839 (2019).
    • 87. Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J. Control. Release 295, 250–267 (2019).
    • 88. Gorjikhah F, Davaran S, Salehi R et al. Improving “lab-on-a-chip” techniques using biomedical nanotechnology: a review. Artif. Cells Nanomed. Biotechnol. 44(7), 1609–1614 (2016).
    • 89. Garcia-Cordero JL, Ricco AJ. Lab-on-a-chip (general philosophy). In: Encyclopedia of Microfluidics and Nanofluidics Li D (Ed.). Springer, MA, USA, 962–969 (2008).
    • 90. Medina-Sánchez M, Miserere S, Merkoçi A. Nanomaterials and lab-on-a-chip technologies. Lab Chip 12(11), 1932–1943 (2012).
    • 91. Singh P, Pandey SK, Singh J, Srivastava S, Sachan S, Singh SK. Biomedical perspective of electrochemical nanobiosensor. Nanomicro Lett. 8(3), 193–203 (2016).
    • 92. Hong Y, Huh Y-M, Yoon DS, Yang J. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomater. 2012, 759830 (2012).
    • 93. Amendola V. Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method. Phys. Chem. 18(3), 2230–2241 (2016).
    • 94. Wang J, Lin W, Cao E, Xu X, Liang W, Zhang X. Surface plasmon resonance sensors on raman and fluorescence spectroscopy. Sensors 17(12), 2719 (2017).
    • 95. Escobedo C, Chou Y-W, Rahman M et al. Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst 138(5), 1450–1458 (2013).
    • 96. Tsao CW. Polymer microfluidics: simple, low-Cost fabrication process bridging academic lab research to commercialized production. Micromachines 7(12), 255 (2016).
    • 97. Gong X, Wen W. Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication. Biomicrofluidics 3, 12007 (2009).
    • 98. Sadabadi H, Badilescu S, Packirisamy M, Wüthrich R. Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens. Bioelectron. 44, 77–84 (2013).
    • 99. Ghasemi A, Amiri H, Zare H et al. Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. Microfluidics Nanofluidics 21(9), 151 (2017).
    • 100. Venkatanarayanan A, Crowley K, Lestini E, Keyes TE, Rusling JF, Forster RJ. High sensitivity carbon nanotube based electrochemiluminescence sensor array. Biosens. Bioelectron. 31(1), 233–239 (2012).
    • 101. Chałupniak A, Merkoçi A. Graphene oxide–poly(dimethylsiloxane)-based lab-on-a-chip platform for heavy-metals preconcentration and electrochemical detection. ACS Appl. Mater. Interfaces 9(51), 44766–44775 (2017).
    • 102. Li X, Zhao C, Liu X. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst. Nanoeng. 1(1), 15014 (2015).
    • 103. Upasham Sayali, Tanak Ambalika, Prasad S. Cardiac troponin biosensors: where are we now? Adv. Health Care Technol. 4, 1–13 (2018).
    • 104. Tate JR, Panteghini M.. Measurement of cardiac troponins revisited. Biochim. Clin. 32, 535–546 (2008).
    • 105. Kauffman DR, Star A. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst 135(11), 2790–2797 (2010).
    • 106. Yuan G-J, Xie J-F, Li H-H et al. Thermally reduced graphene oxide/carbon nanotube composite films for thermal packaging applications. Materials 13(2), 317 (2020).
    • 107. Pandora Genomics LLC. US9417210 (2016).
    • 108. Labrador Diagnostics LLC. US8822167 (2016).
    • 109. Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol. Pharm. 12(2), 314–321 (2015).
    • 110. Giouroudi I, Keplinger F. Microfluidic biosensing systems using magnetic nanoparticles. Int. J. Mol. Sci. 14(9), 18535–18556 (2013).
    • 111. Wang S, Liu N, Zheng L, Cai G, Lin J. A lab-on-chip device for the sample-in-result-out detection of viable Salmonella using loop-mediated isothermal amplification and real-time turbidity monitoring. Lab Chip 20(13), 2296–2305 (2020).
    • 112. Goluch E, Stoeva S, Lee J-S, Shaikh K, Mirkin C, Liu C. A microfluidic detection system based upon a surface immobilized biobarcode assay. Biosens. Bioelectron. 24, 2397–2403 (2009).
    • 113. Zhang C, Lv X, Yasmeen S, Qing H, Deng Y. Integrated microfluidic chip with nanobiosensor for rapid and label-free detection of a specific gene. Anal. Methods 9(24), 3619–3625 (2017).
    • 114. Zhao J, Hashmi A, Xu J, Xue W. A compact lab-on-a-chip nanosensor for glycerol detection. Appl. Phys. Lett. 100, 3109 (2012).
    • 115. Kim J, Elsnab J, Gehrke C, Li J, Gale BK. Microfluidic integrated multi-walled carbon nanotube (MWCNT) sensor for electrochemical nucleic acid concentration measurement. Sens. Actuators B Chem. 185, 370–376 (2013).
    • 116. Yang J, Yu J-H, Rudi Strickler J, Chang W-J, Gunasekaran S. Nickel nanoparticle–chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens. Bioelectro. 47, 530–538 (2013).
    • 117. Van Den Berg A, Mummery CL, Passier R, Van Der Meer AD. Personalised organs-on-chips: functional testing for precision medicine. Lab Chip 19(2), 198–205 (2019).
    • 118. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21(12), 745–754 (2011).
    • 119. Lin A, Sved Skottvoll F, Rayner S et al. 3D cell culture models and organ-on-a-chip: meet separation science and mass spectrometry. Electrophoresis 41(1–2), 56–64 (2020).
    • 120. Rigat-Brugarolas LG, Elizalde-Torrent A, Bernabeu M et al. A functional microengineered model of the human splenon-on-a-chip. Lab Chip 14(10), 1715–1724 (2014).
    • 121. Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee SH. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of alzheimer's disease. Lab Chip 15(1), 141–150 (2015).
    • 122. Stucki AO, Stucki JD, Hall SRR et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15(5), 1302–1310 (2015).
    • 123. Abaci HE, Gledhill K, Guo Z, Christiano AM, Shuler ML. Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip 15(3), 882–888 (2015).
    • 124. Giacomelli E, Bellin M, Sala L et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144(6), 1008–1017 (2017).
    • 125. Yasotharan S, Pinto S, Sled JG, Bolz S-S, Günther A. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab Chip 15(12), 2660–2669 (2015).
    • 126. Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip 17(14), 2395–2420 (2017).
    • 127. Wevers NR, Van Vught R, Wilschut KJ et al. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci. Rep. 6(1), 38856 (2016).
    • 128. Lanz HL, Saleh A, Kramer B et al. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17(1), 017–3709 (2017).
    • 129. Beaurivage C, Naumovska E, Chang XY et al. Development of a gut-on-a-chip model for high throughput disease modeling and drug discovery. Int. J. Mol. Sci. 20(22), (2019).
    • 130. Iontox LLC. US9631167 (2017).
    • 131. Maoz BM, Herland A, Henry OYF et al. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip 17(13), 2294–2302 (2017).
    • 132. Kratz SRA, Höll G, Schuller P, Ertl P, Rothbauer M. Latest trends in biosensing for microphysiological organs-on-a-chip and body-on-a-chip systems. Biosensors 9(3), 110 (2019).
    • 133. Weltin A, Hammer S, Noor F, Kaminski Y, Kieninger J, Urban G. Accessing 3D microtissue metabolism: lactate and oxygen monitoring in hepatocyte spheroids. Biosens. Bioelectron. 87, 941–948 (2016).
    • 134. Weltin A, Slotwinski K, Kieninger J et al. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14(1), 138–146 (2013).
    • 135. Shin SR, Kilic T, Zhang YS et al. Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Adv. Sci. 4(5), 1600522 (2017).
    • 136. Zhang Y, Bai X, Wang X, Shiu K-K, Zhu Y, Jiang H. Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal. Chem. 86(19), 9459–9465 (2014).
    • 137. Liu J, Bo X, Zhao Z, Guo L. Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells. Biosens. Bioelectron. 74, 71–77 (2015).
    • 138. Ju J, Chen W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 87(3), 1903–1910 (2015).
    • 139. Duarte Y, Márquez-Miranda V, Miossec MJ, González-Nilo F. Integration of target discovery, drug discovery and drug delivery: a review on computational strategies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11(4), e1554 (2019).
    • 140. Neužil P, Giselbrecht S, Länge K, Huang TJ, Manz A. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. 11(8), 620–632 (2012).
    • 141. Choi J-H, Lee J, Shin W, Choi J-W, Kim HJ. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system. Nano Converg. 3(1), 24 (2016).
    • 142. Valencia PM, Pridgen EM, Rhee M, Langer R, Farokhzad OC, Karnik R. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 7(12), 10671–10680 (2013).
    • 143. Li LL, Li X, Wang HJSM. Microfluidic synthesis of nanomaterials for biomedical applications. Small Methods 1(8), 1700140 (2017).
    • 144. Shawgo RS, Richards Grayson AC, Li Y, Cima MJ. Biomems for drug delivery. Curr. Opin. Solid State Mater. Sci. 6(4), 329–334 (2002).
    • 145. Song P, Tng DJH, Hu R, Lin G, Meng E, Yong K-T. An electrochemically actuated mems device for individualized drug delivery: an in vitro study. Adv. Healthc. Mater. 2(8), 1170–1178 (2013).
    • 146. Jackson J, Chen A, Zhang H, Burt H, Chiao M. Design and near-infrared actuation of a gold nanorod–polymer microelectromechanical device for on-demand drug delivery. Micromachines 9(1), 28 (2018).
    • 147. Yang X, Li K, Zhang X et al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip 18(3), 486–495 (2018).