We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation

    Lu Jia

    The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China

    Authors contributed equally

    Search for more papers by this author

    ,
    Shuang-Li Hao

    The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China

    Authors contributed equally

    Search for more papers by this author

    &
    Wan-Xi Yang

    *Author for correspondence: Tel.: +86 571 88206643; Fax: +86 571 88206485;

    E-mail Address: wxyang@spermlab.org

    The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China

    Published Online:https://doi.org/10.2217/nnm-2019-0387

    Due to their unique physicochemical properties, nanoparticles (NPs) have been increasingly developed for use in various fields. However, there has been both growing negative concerns with toxicity and positive realization of opportunities in nanomedicine, coming from the growing understanding of the associations between NPs and the human body, particularly relating to their cellular autophagic effects. This review summarizes NP-induced autophagy via the modulation of the mTOR signaling pathway and other associated signals including AMPK and ERK and also demonstrates how reactive oxygen species generation greatly underlies the regulation processes. The perspectives in this review aim to contribute to NP design, particularly in consideration of nanotoxicity and the potential for the precise application of NPs in nanomedicine.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Guo C, Yang M, Jing L et al. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated MAPK/Bcl-2 and PI3K/Akt/mTOR signaling. Int. J. Nanomedicine 11, 5257–5276 (2016). •• Investigates extensively the exact effects of reactive oxygen species on the signaling molecules and cytotoxicity involved in Si nanoparticle (NP)-induced endothelial injury.
    • 2. Hulea L, Markovic Z, Topisirovic I, Simmet T, Trajkovic V. Biomedical Potential of mTOR modulation by nanoparticles. Trends Biotechnol. 34(5), 349–353 (2016).
    • 3. Wen X, Klionsky DJ. At a glance: a history of autophagy and cancer. Semin. Cancer Biol. S1044–579X(19), 30167–1 (2019).
    • 4. Su Y, Wei X, Peng F et al. Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett. 12(4), 1845–1850 (2012).
    • 5. Guan M, Zhou Y, Zhu QL et al. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomedicine 8(7), 1172–1181 (2012).
    • 6. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8(2), 147–166 (2012).
    • 7. Bitar A, Ahmad NM, Fessi H, Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discov. Today 17(19–20), 1147–1154 (2012).
    • 8. Chen L, Wu LY, Yang WX. Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine 13(22), 2939–2955 (2018).
    • 9. Xia L, Wang Y, Chen Y et al. Cuprous oxide nanoparticles inhibit the growth of cervical carcinoma by inducing autophagy. Oncotarget 8(37), 61083–61092 (2017).
    • 10. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 140(3), 313–326 (2010).
    • 11. Lin J, Huang Z, Wu H et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 10(11), 2006–2020 (2014).
    • 12. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9(10), 1102–1109 (2007).
    • 13. Nakagawa I, Amano A, Mizushima N et al. Autophagy defends cells against invading group A Streptococcus. Science 306(5698), 1037–1040 (2004).
    • 14. Zabirnyk O, Yezhelyev M, Seleverstov O. Nanoparticles as a novel class of autophagy activators. Autophagy 3(3), 278–281 (2007).
    • 15. Anozie UC, Dalhaimer P. Molecular links among non-biodegradable nanoparticles, reactive oxygen species and autophagy. Adv. Drug Deliv. Rev. 122, 65–73 (2017).
    • 16. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125(1), 25–32 (2015).
    • 17. Hosokawa N, Hara T, Kaizuka T et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20(7), 1981–1991 (2009).
    • 18. Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16(12), 3693–3704 (1997).
    • 19. Li L, Li L, Zhou X et al. Silver nanoparticles induce protective autophagy via Ca2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 13(3), 369–391 (2019).
    • 20. de Oliveira MTP, de Sá Coutinho D, Tenório de Souza É et al. Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways. Int. J. Nanomedicine 14, 5215–5228 (2019).
    • 21. Wang S, Li Y, Fan J et al. The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 35(26), 7588–7597 (2014).
    • 22. Hamasaki M1, Furuta N, Matsuda A et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495(7441), 389–393 (2013).
    • 23. Li Y, Wang S, Wang Z et al. Cationic poly(amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells. Nanotechnology 25(36), 365101 (2014). •• Points VEGFR2/PI3K/Akt/mTOR and VEGFR2/MAPK/ERK1/2/mTOR signaling pathway are involved in Si NP-induced cardiovascular toxicity.
    • 24. Lou M, Zhang LN, Ji PG et al. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: in vitro and in vivo. Biomed. Pharmacother. 84, 1–9 (2016).
    • 25. Liu Y, Yu H, Zhang X et al. The protective role of autophagy in nephrotoxicity induced by bismuth nanoparticles through AMPK/mTOR pathway. Nanotoxicology 12(6), 586–601 (2018).
    • 26. Tomic S, Janjetovic K, Mihajlovic D et al. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 146, 13–28 (2017).
    • 27. Wang X, Sun D, Hu Y et al. The roles of oxidative stress and Beclin-1 in the autophagosome clearance impairment triggered by cardiac arrest. Free Radic. Biol. Med. 136, 87–95 (2019).
    • 28. Sinha S, Levine B. The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27(Suppl. 1), S137–S148 (2008).
    • 29. Zhang X, Yin H, Li Z, Zhang T, Yang Z. Nano-TiO2 induces autophagy to protect against cell death through antioxidative mechanism in podocytes. Cell Biol. Toxicol. 32(6), 513–527 (2016).
    • 30. Roy R, Singh SK, Chauhan LK, Das M, Tripathi A, Dwivedi PD. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol. Lett. 227(1), 29–40 (2014). • Demonstrates autophagy supports apoptosis on ZnO NPs exposure.
    • 31. Kabeya Y, Mizushima N, Ueno T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19(21), 5720–5728 (2000).
    • 32. Zhou HF, Yan H, Hu Y et al. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano 8(7), 7305–7317 (2014).
    • 33. Kim JY, Park JH, Kim M et al. Safety of nonporous silica nanoparticles in human corneal endothelial cells. Sci. Rep. 7(1), 14566 (2017).
    • 34. Schutz I, Lopez-Hernandez T, Gao Q et al. Lysosomal dysfunction caused by cellular accumulation of silica nanoparticles. J. Biol. Chem. 291(27), 14170–14184 (2016).
    • 35. Li Y, Zhu H, Zeng X et al. Suppression of autophagy enhanced growth inhibition and apoptosis of interferon-beta in human glioma cells. Mol. Neurobiol. 47(3), 1000–1010 (2013).
    • 36. Shen S, Li L, Li S, Bai Y, Liu H. Metal-organic frameworks induce autophagy in mouse embryonic fibroblast cells. Nanoscale 10(38), 18161–18168 (2018).
    • 37. Aparicio R, Rana A, Walker DW. Upregulation of the autophagy adaptor p62/SQSTM1 prolongs health and lifespan in middle-aged Drosophila. Cell Rep. 28(4), 1029–1040 (2019). • Manifests that AMPK-mTOR signaling is enrolled in Ag NP-induced autophagy process rather than PI3K/AKT/mTOR signaling.
    • 38. Sushma, Kumar H, Ahmad I, Dutta PK. Evaluation of the DNA damaging potential of indigenous health hazardous quartz nanoparticles on the cultured lung cells. Toxicol. Res. 6(2), 152–161 (2017).
    • 39. Zhu L, Guo D, Sun L et al. Activation of autophagy by elevated reactive oxygen species rather than released silver ions promotes cytotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in hematopoietic cells. Nanoscale 9(17), 5489–5498 (2017).
    • 40. Chen Y, Wang M, Zhang T et al. Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure. Ecotoxicol. Environ. Saf. 166, 71–77 (2018).
    • 41. Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 7(2), 736–746 (2015).
    • 42. Pankiv S, Clausen TH, Lamark T et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282(33), 24131–24145 (2007).
    • 43. Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J. Pathol. 221(2), 117–124 (2010).
    • 44. Eskelinen EL. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 4(2), 257–260 (2008).
    • 45. Liu HL, Zhang YL, Yang N et al. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis. 2, e159 (2011).
    • 46. Han XB, Li HX, Jiang YQ et al. Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation. Cell Death Dis. 8(6), e2864 (2017).
    • 47. Pliyev BK, Menshikov M. Differential effects of the autophagy inhibitors 3-methyladenine and chloroquine on spontaneous and TNF-alpha-induced neutrophil apoptosis. Apoptosis 17(10), 1050–1065 (2012).
    • 48. Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl Acad. Sci. USA 79(6), 1889–1892 (1982).
    • 49. Kimura T, Takabatake Y, Takahashi A, Isaka Y. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 73(1), 3–7 (2013).
    • 50. Li Y, Zeng X, Wang S et al. Inhibition of autophagy protects against PAMAM dendrimers-induced hepatotoxicity. Nanotoxicology 9(3), 344–355 (2015).
    • 51. Wan B, Wang ZX, Lv QY et al. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol. Lett. 221(2), 118–127 (2013).
    • 52. Ma X, Wu Y, Jin S et al. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5(11), 8629–8639 (2011).
    • 53. Zhang X, Zhang H, Liang X et al. Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: lysosome impairment, mitochondrial damage and ER stress. Mol. Pharm. 13(7), 2578–2587 (2016).
    • 54. Schaaf MB, Houbaert D, Meçe O et al. Lysosomal pathways and autophagy distinctively control endothelial cell behavior to affect tumor vasculature. Front. Oncol. 9, 171 (2019).
    • 55. Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 10(8), 1021–1040 (2016).
    • 56. Miyayama T, Matsuoka M. Involvement of lysosomal dysfunction in silver nanoparticle-induced cellular damage in A549 human lung alveolar epithelial cells. J. Occup. Med. Toxicol. 11, 1 (2016).
    • 57. Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 9, 20 (2012).
    • 58. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12(1), 21–35 (2011).
    • 59. Bove J, Martinez-Vicente M, Vila M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. Neurosci. 12(8), 437–452 (2011).
    • 60. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett. 584(7), 1287–1295 (2010).
    • 61. Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33(2), 67–75 (2010).
    • 62. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 12(1), 9–22 (2007).
    • 63. Duan J, Yu Y, Yu Y et al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int. J. Nanomedicine 9, 5131–5141 (2014).
    • 64. Xie H, Wu J. Silica nanoparticles induce alpha-synuclein induction and aggregation in PC12-cells. Chem. Biol. Interact. 258, 197–204 (2016).
    • 65. Li Q, Hu H, Jiang L, Zou Y, Duan J, Sun Z. Cytotoxicity and autophagy dysfunction induced by different sizes of silica particles in human bronchial epithelial BEAS-2B cells. Toxicol. Res. 5(4), 1216–1228 (2016).
    • 66. Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol. Dis. 84, 39–49 (2015).
    • 67. Meley D, Pattingre S, Codogno P. [PI3 kinases and the control of autophagia]. Bull. Cancer 93(5), 439–444 (2006).
    • 68. Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3(6), 635–637 (2007).
    • 69. Li C, Liu H, Sun Y et al. PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J. Mol. Cell Biol. 1(1), 37–45 (2009). •• Provides novel insight into the molecular pathogenesis of nanomaterial-induced lung injury and contributes to a theoretical foundation for the development of safety procedures regarding nanomaterials.
    • 70. Duan J, Yu Y, Yu Y et al. Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Part. Fibre Toxicol. 11, 50 (2014).
    • 71. Wu Y, Si Y, Xiang Y et al. Polyphyllin I activates AMPK to suppress the growth of non-small-cell lung cancer via induction of autophagy. Arch. Biochem. Biophys. 16, 108285 (2020).
    • 72. Pattingre S, Tassa A, Qu X et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6), 927–939 (2005).
    • 73. Wang C, Chen K, Xia Y et al. N-acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway. PLoS ONE 9(9), e108855 (2014).
    • 74. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5(1), 9–19 (2012).
    • 75. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89–116 (2007).
    • 76. Ha KN, Chen Y, Cai J, Sternberg P Jr. Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest. Ophthalmol. Vis. Sci. 47(6), 2709–2715 (2006).
    • 77. Zhao Y, Song W, Wang Z et al. Resveratrol attenuates testicular apoptosis in Type 1 diabetic mice: Role of Akt-mediated Nrf2 activation and p62-dependent Keap1 degradation. Redox Biol. 14, 609–617 (2018).
    • 78. Piao MJ, Kang KA, Lee IK et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 201(1), 92–100 (2011).
    • 79. Blanco J, Lafuente D, Gomez M, Garcia T, Domingo JL, Sanchez DJ. Polyvinyl pyrrolidone-coated silver nanoparticles in a human lung cancer cells: time- and dose-dependent influence over p53 and caspase-3 protein expression and epigenetic effects. Arch. Toxicol. 91(2), 651–666 (2017).
    • 80. Juling S, Bohmert L, Lichtenstein D et al. Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food Chem. Toxicol. 113, 255–266 (2018).
    • 81. Chen L, Miao Y, Chen L et al. The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials 34(38), 10172–10181 (2013). • Adds new mechanisms for toxicity of nanoparticles and suggest that autophagy-blocking reagents may serve as a potential remedial agent for synaptic impairment induced by quantum dots.
    • 82. Piao MJ, Kim KC, Choi JY, Choi J, Hyun JW. Silver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in human Chang liver cells. Toxicol. Lett. 207(2), 143–148 (2011).
    • 83. Kang SJ, Ryoo IG, Lee YJ, Kwak MK. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol. Appl. Pharmacol. 258(1), 89–98 (2012).
    • 84. Lee MJ, Lee SJ, Yun SJ et al. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species. Int. J. Nanomedicine 11, 55–68 (2016).
    • 85. Blanco J, Tomas-Hernandez S, Garcia T et al. Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signalling pathway and p53 and cleaved caspase 3 protein expression. Food Chem. Toxicol. 115, 398–404 (2018).
    • 86. Murphy MP. How mitochondria produce reactive oxygen species. Biochem. J. 417(1), 1–13 (2009).
    • 87. Nixon RA. The role of autophagy in neurodegenerative disease. Nat. Med. 19(8), 983–997 (2013).
    • 88. Schrijvers DM, De Meyer GR, Martinet W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler. Thromb. Vasc. Biol. 31(12), 2787–2791 (2011).
    • 89. Perrotta I, Aquila S. The role of oxidative stress and autophagy in atherosclerosis. Oxid. Med. Cell. Longev. 2015, 130315 (2015).
    • 90. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26(7), 1749–1760 (2007).
    • 91. Yu Y, Duan J, Yu Y et al. Silica nanoparticles induce autophagy and autophagic cell death in HepG2 cells triggered by reactive oxygen species. J. Hazard. Mater. 270, 176–186 (2014).
    • 92. Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17(9), 422–427 (2007).
    • 93. Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16(7), 1040–1052 (2009).
    • 94. Potashnik R, Bloch-Damti A, Bashan N, Rudich A. IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia 46(5), 639–648 (2003).
    • 95. Tzatsos A, Tsichlis PN. Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. J. Biol. Chem. 282(25), 18069–18082 (2007).
    • 96. Fan J, Ren D, Wang J et al. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Dis. 11(2), 126 (2020).
    • 97. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007).
    • 98. Sun L, Li Y, Liu X et al. Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol. In Vitro 25(8), 1619–1629 (2011).
    • 99. Bressan E, Ferroni L, Gardin C et al. Silver nanoparticles and mitochondrial interaction. Int. J. Dent. 2013, 312747 (2013).
    • 100. Asharani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2), 279–290 (2009).
    • 101. Huang Y, Lu X, Ma J. Toxicity of silver nanoparticles to human dermal fibroblasts on microRNA level. J. Biomed. Nanotechnol. 10(11), 3304–3317 (2014).
    • 102. Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 163(3), 560–569 (2015).
    • 103. Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part. Fibre Toxicol. 7(1), 39 (2010).
    • 104. Afeseh Ngwa H, Kanthasamy A, Gu Y, Fang N, Anantharam V, Kanthasamy AG. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol. Appl. Pharmacol. 256(3), 227–240 (2011).
    • 105. Wu YN, Yang LX, Shi XY et al. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32(20), 4565–4573 (2011).
    • 106. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333(6046), 1109–1112 (2011).
    • 107. Gibson SB. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy. Autophagy 6(7), 835–837 (2010).
    • 108. Adiseshaiah PP, Crist RM, Hook SS, Mcneil SE. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol. 13(12), 750–765 (2016).
    • 109. Chen Z, Wang ZY, Chen SJ. Acute promyelocytic leukemia: cellular and molecular basis of differentiation and apoptosis. Pharmacol. Ther. 76(1–3), 141–149 (1997).
    • 110. Chan DC. Mitochondria: dynamic organelles in disease, aging and development. Cell 125(7), 1241–1252 (2006).
    • 111. Zhang XJ, Chen S, Huang KX, Le WD. Why should autophagic flux be assessed? Acta Pharmacol. Sin. 34(5), 595–599 (2013).
    • 112. Zhou W, Miao Y, Zhang Y et al. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals. Nanotechnology 24(16), 165102 (2013).
    • 113. Lin YX, Wang Y, Qiao SL et al. pH-Sensitive polymeric nanoparticles modulate autophagic effect via lysosome impairment. Small 12(21), 2921–2931 (2016). • Concludes that pH-sensitivity is one of the most important factors in autophagy induction.
    • 114. Zhou X, Jia J, Luo Z, Su G, Yue T, Yan B. Remote induction of cell autophagy by 2D MoS2 nanosheets via perturbing cell surface receptors and mTOR pathway from outside of cells. ACS Appl. Mater. Interfaces 11(7), 6829–6839 (2019).
    • 115. Loos C, Syrovets T, Musyanovych A, Mailander V, Landfester K, Simmet T. Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials 35(6), 1944–1953 (2014).
    • 116. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 451(7182), 1069–1075 (2008).
    • 117. Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113), 780–786 (2006).
    • 118. Nowak JS, Mehn D, Nativo P et al. Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicol. Lett. 224(1), 84–92 (2014).
    • 119. Scott RC, Juhasz G, Neufeld TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr. Biol. 17(1), 1–11 (2007).
    • 120. Zhang TG, Zhang YL, Zhou QQ, Wang XH, Zhan LS. Eriocalyxin B induces apoptosis and autophagy involving akt/mammalian target of rapamycin (mTOR) pathway in prostate cancer cells. Med. Sci. Monit. 25, 8534–8543 (2019).
    • 121. Espert L, Denizot M, Grimaldi M et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest. 116(8), 2161–2172 (2006).
    • 122. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7(2), 97–110 (2004).
    • 123. Komatsu M, Ichimura Y. Physiological significance of selective degradation of p62 by autophagy. FEBS Lett. 584(7), 1374–1378 (2010).
    • 124. Bhowmik T, Gomes A. NKCT1 (purified Naja kaouthia protein toxin) conjugated gold nanoparticles induced Akt/mTOR inactivation mediated autophagic and caspase 3 activated apoptotic cell death in leukemic cell. Toxicon. 121, 86–97 (2016).
    • 125. Changchien JJ, Chen YJ, Huang CH, Cheng TL, Lin SR, Chang LS. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. Toxicol. Appl. Pharmacol. 284(1), 33–41 (2015).
    • 126. Yu Y, Duan J, Yu Y et al. Autophagy and autophagy dysfunction contribute to apoptosis in HepG2 cells exposed to nanosilica. Toxicol. Res. 5(3), 871–882 (2016).
    • 127. Chen ZH, Lam HC, Jin Y et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc. Natl Acad. Sci. USA 107(44), 18880–18885 (2010).
    • 128. Castedo M, Ferri KF, Kroemer G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ. 9(2), 99–100 (2002).
    • 129. Werzowa J, Koehrer S, Strommer S et al. Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. J. Invest. Dermatol. 131(2), 495–503 (2011).
    • 130. Shi Y, Frankel A, Radvanyi LG, Penn LZ, Miller RG, Mills GB. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. 55(9), 1982–1988 (1995).
    • 131. Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J. Biol. Chem. 276(32), 30392–30398 (2001).
    • 132. Ravikumar B, Sarkar S, Davies JE et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90(4), 1383–1435 (2010).
    • 133. Le WD, Qin ZH. New horizon in autophagy research. Acta Pharmacol. Sin. 34(5), 583–584 (2013).
    • 134. Skenderi F, Vranic S, Damjanov I. Regulated cell death in diagnostic histopathology. Int. J. Dev. Biol. 59(1–3), 149–158 (2015).
    • 135. Song BQ, Chi Y, Li X et al. Inhibition of notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cell. Physiol. Biochem. 36(5), 1991–2002 (2015).
    • 136. Teachey DT, Grupp SA, Brown VI. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br. J. Haematol. 145(5), 569–580 (2009).
    • 137. Zhang M, Kim HS, Jin T, Moon WK. Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer. J. Photochem. Photobiol. B. 170, 58–64 (2017).
    • 138. Jiralerspong S, Palla SL, Giordano SH et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 27(20), 3297–3302 (2009).
    • 139. Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annu. Rev. Med. 66, 17–29 (2015).
    • 140. Zhao Y, Wang W, Guo S et al. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun. 7, 11822 (2016).
    • 141. Song W, Ma Z, Zhang Y, Yang C. Autophagy plays a dual role during intracellular siRNA delivery by lipoplex and polyplex nanoparticles. Acta Biomater. 58, 196–204 (2017). •• Describes that modulating autophagy process will result in distinct knockdown efficiency, which may be applied as a potential convenient way for improving siRNA delivery efficacy.
    • 142. Luo CL, Liu YQ, Wang P et al. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother. 82, 595–605 (2016).
    • 143. Wang FZ, Xing L, Tang ZH et al. Codelivery of doxorubicin and shAkt1 by poly(ethylenimine)-glycyrrhetinic acid nanoparticles to induce autophagy-mediated liver cancer combination therapy. Mol. Pharm. 13(4), 1298–1307 (2016).
    • 144. Tian J, Xu S, Deng H et al. Fabrication of self-assembled chitosan-dispersed LDL nanoparticles for drug delivery with a one-step green method. Int. J. Pharm. 517(1–2), 25–34 (2017).