We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Antihepatoma activity of multifunctional polymeric nanoparticles via inhibition of microtubules and tyrosine kinases

    Radhika Poojari

    *Author for correspondence:

    E-mail Address: drradhikapoojari@gmail.com

    Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India

    ,
    Avishkar V Sawant

    Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India

    ,
    Sudarshan Kini

    Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India

    Nitte University Centre for Science Education & Research, Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru, 575018, India

    ,
    Rohit Srivastava

    Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India

    &
    Dulal Panda

    **Author for correspondence:

    E-mail Address: panda@iitb.ac.in

    Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India

    Published Online:https://doi.org/10.2217/nnm-2019-0349

    Aim: Synthesis of poly-L-lactic acid nanoparticles comprising of microtubule-inhibitor docetaxel and tyrosine kinase inhibitor sorafenib (PLDS NPs) for hepatoma treatment. Materials & methods: PLDS NPs were prepared by the emulsion solvent evaporation method and the anticancer activity was evaluated in Huh7 hepatoma cells. Results: Real-time imaging of quantum dots incorporating poly-L-lactic acid nanoparticles showed a rapid internalization of the nanoparticles in Huh7 cells. PLDS NPs exerted stronger antiproliferative, apoptotic and antiangiogenic effects than free single drug counterparts. They strongly promoted microtubule bundling, multinucleation and increased mitotic index in Huh7 cells. They also inhibited the expression of pERK1/2, pAKT and cyclin D1. Conclusion: We developed a single-nanoscale platform for dual drug delivery and high-sensitivity quantum dots imaging for hepatoma treatment.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Siegel R , Ma J , Zou Z , Jemal A . Cancer statistics. CA Cancer J. Clin. 64(1), 9–29 (2014).
    • 2. Yang JD , Roberts LR . Hepatocellular carcinoma: a global view. Nat. Rev. Gastroenterol. Hepatol. 7(8), 448–458 (2010).
    • 3. Terry K , Copur MS . Molecular targeted therapy of hepatocellular carcinoma. J. Cancer Ther. 4(2), 426–439 (2013).
    • 4. Choe MS , Chen Z , Klass CM , Zhang X , Shin DM . Enhancement of docetaxel-induced cytotoxicity by blocking epidermal growth factor receptor and cyclooxygenase-2 pathways in squamous cell carcinoma of the head and neck. Clin. Cancer Res. 13(10), 3015–3023 (2007).
    • 5. Herbst RS , Khuri FR . Mode of action of docetaxel – a basis for combination with novel anticancer agents. Cancer Treat. Rev. 29(5), 407–415 (2003).
    • 6. Seligmann J , Twelves C . Tubulin: an example of targeted chemotherapy. Future Med. Chem. 5(3), 339–352 (2013). •• Provides information on clinically used microtubule-targeting agents.
    • 7. Dumontet C , Jordan MA . Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 9(10), 790–803 (2010). • A comprehensive review of microtubule-binding agents.
    • 8. Zhang J , Yang PL , Gray NS . Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer. 9(1), 28–39 (2009). • A broad overview of small-molecule kinase inhibitors in cancer.
    • 9. Wilhelm S , Carter C , Lynch M et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 5(10), 835–844 (2006).
    • 10. Baker J , Ajani J , Scotté F et al. Docetaxel-related side effects and their management. Eur. J. Oncol. Nurs. 13(1), 49–59 (2009).
    • 11. Montero A , Fossella F , Hortobagyi G , Valero V . Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol. 6(4), 229–239 (2005).
    • 12. Baker SD , Zhao M , Lee CK et al. Comparative pharmacokinetics of weekly and every-three-weeks docetaxel. Clin. Cancer Res. 10(6), 1976–1983 (2004).
    • 13. Morabito A , De Maio E , Di Maio M , Normanno N , Perrone F . Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist. 11(7), 753–764 (2006).
    • 14. Wilhelm SM , Adnane L , Newell P , Villanueva A , Llovet JM , Lynch M . Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7(10), 3129–3140 (2008).
    • 15. Almhanna K , Philip PA . Safety and efficacy of sorafenib in the treatment of hepatocellular carcinoma. Onco. Targets Ther. 2, 261–267 (2009).
    • 16. Lacouture ME , Reilly LM , Gerami P , Guitart J . Hand foot skin reaction in cancer patients treated with the multikinase inhibitors sorafenib and sunitinib. Ann. Oncol. 19(11), 1955–1961 (2008).
    • 17. Carr BI , Carroll S , Muszbek N , Gondek K . Economic evaluation of sorafenib in unresectable hepatocellular carcinoma. J. Gastroenterol. Hepatol. 25(11), 1739–1746 (2010).
    • 18. Shin HC , Alani AW , Rao DA , Rockich NC , Kwon GS . Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J. Control. Rel. 140(3), 294–300 (2009).
    • 19. Liu Y , Feng L , Liu T et al. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 6(6), 3231–3242 (2014).
    • 20. Avgoustakis K . Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Deliv. 1(4), 321–333 (2004).
    • 21. Kamaly N , Xiao Z , Valencia PM , Radovic-Moreno AF , Farokhzad OC . Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41(7), 2971–3010 (2012). •• Provides insights into the design and development of polymeric therapeutic nanoparticles.
    • 22. ClinicalTrials.gov (2015). https://clinicaltrials.gov/ct2/show/NCT01792479
    • 23. Musumeci T , Ventura CA , Giannone I et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm. 325(1–2), 172–179 (2006).
    • 24. Liu Y , Li K , Pan J , Liu B , Feng SS . Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 31(2), 330–338 (2010).
    • 25. Agrawal R , Shanavas A , Yadav S , Aslam M , Bahadur D , Srivastava R . Polyelectrolyte coated polymeric nanoparticles for controlled release of docetaxel. J. Biomed. Nanotechnol. 8(1), 19–28 (2012).
    • 26. Roy A , Murakami M , Ernsting MJ , Hoang B , Undzys E , Li SD . Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein-mediated multidrug resistance. Mol. Pharm. 11(8), 2592–2599 (2014).
    • 27. Zhang X , Yang Y , Liang X et al. Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer. Theranostics 4(11), 1085–1095 (2014).
    • 28. Hrkach J , Von Hoff D , Mukkaram Ali M et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4(128), 128–139 (2012). •• Illustrates the importance of clinical translation of a PSMA-targeted docetaxel nanoparticle.
    • 29. Zhang L , Gong F , Zhang F , Ma J , Zhang P , Shen J . Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. Int. J. Nanomed. 8, 1517–1524 (2013).
    • 30. Poojari R , Kini S , Srivastava R , Panda D . Intracellular interactions of electrostatically mediated layer-by-layer assembled polyelectrolytes based sorafenib nanoparticles in oral cancer cells. Colloids Surf. B. 143, 131–138 (2016). •• Demonstrates the anticancer potential of layer-by-layer assembled polyelectrolytes-based sorafenib nanoparticles against oral cancer.
    • 31. Wu X , Liu H , Liu J et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21(1), 41–46 (2003). •• Illustrates the importance of quantum dots-based probes in cellular imaging.
    • 32. Saran AD , Sadawana MM , Srivastava R , Bellare JR . An optimized quantum dot-ligand system for biosensing applications: evaluation as a glucose biosensor. Colloids Surf. A: Physicochem. Eng. Asp. 384(1–3), 393–400 (2011).
    • 33. May A , Bhaumik S , Gambhir SS , Zhan C , Yazdanfar S . Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection. J. Biomed. Opt. 14(6), 060504 (2009).
    • 34. Zhang LW , Monteiro-Riviere NA . Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci. 110(1), 38–55 (2009).
    • 35. Muthu MS , Kulkarni SA , Raju A , Feng SS . Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 33(12), 3494–3501 (2012).
    • 36. Dubertret B , Skourides P , Norris DJ , Noireaux V , Brivanlou AH , Libchaber A . In vivo imaging of quantum dots encapsulated in phospholipid micelles . Science 298 (5599), 1759–1762 (2002).
    • 37. Poojari R , Kini S , Srivastava R , Panda D . A chimeric cetuximab-functionalized corona as a potent delivery system for microtubule-destabilizing nanocomplexes to hepatocellular carcinoma cells: a focus on EGFR and tubulin intracellular dynamics. Mol. Pharm. 12(11), 3908–3923 (2015).
    • 38. Vichai V , Kirtikara K . Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1(3), 1112–1116 (2006).
    • 39. Hura N , Sawant AV , Kumari A , Guchhait SK , Panda D . Combretastatin-inspired heterocycles as antitubulin anticancer agents. ACS Omega. 3, 9754–9769 (2018).
    • 40. Franken NA , Rodermond HM , Stap J , Haveman J , Van Bree C . Clonogenic assay of cells in vitro . Nat. Protoc. 1(5), 2315–2319 (2006).
    • 41. Munshi A , Hobbs M , Meyn RE . In: Chemosensitivity: In Vitro Assays (Volume 1). Blumenthal RD (Ed.). Humana Press, NJ, USA, Chapter 2, 21–28 (2005).
    • 42. Arnaoutova I , Kleinman HK . In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract . Nat. Protoc. 5(4), 628–635 (2010).
    • 43. Sun D , Liu Y , Yu Q , Zhou Y , Zhang R , Chen X . The effects of luminescent ruthenium(II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling. Biomaterials 34(1), 171–80 (2013).
    • 44. Sonntag R , Gassler N , Bangen JM , Trautwein C , Liedtke C . Pro-apoptotic Sorafenib signaling in murine hepatocytes depends on malignancy and is associated with PUMA expression in vitro and in vivo . Cell Death Dis. 5, e1030 (2014).
    • 45. Xiong YQ , Sun HC , Zhang W et al. Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin. Cancer Res. 15(15), 4838–4846 (2009).
    • 46. Abou-Alfa GK , Schwartz L , Ricci S et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 24(26), 4293–4300 (2006).
    • 47. Schmidt CM , McKillop IH , Cahill PA , Sitzmann JV . Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 236(1), 54–58 (1997).
    • 48. Xie B , Wang DH , Spechler SJ . Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig. Dis. Sci. 57(5), 1122–1129 (2012).
    • 49. Huynh H , Do PT , Nguyen TH et al. Extracellular signal-regulated kinase induces cyclin D1 and Cdk-2 expression and phosphorylation of retinoblastoma in hepatocellular carcinoma. Int. J. Oncol. 25(6), 1839–1847 (2004).
    • 50. Bisteau X , Caldez MJ , Kaldis P . The complex relationship between liver cancer and the cell cycle: a story of multiple regulations. Cancers (Basel) 6(1), 79–111 (2014).
    • 51. Poojari R , Panda D , Srivastava R . Multifunctional polymeric nanocarrier. Indian Patent Granted No. 317866 (2019).
    • 52. Poojari R , Srivastava R , Panda D . Molecular intersection of a 3-in-1 nanomedicine targeting microtubules, ERK tyrosine kinases with profound nuclear modulations, and quantum imaging for hepatocellular carcinoma therapy. Presented at: Proceedings of the American Association for Cancer Research Annual Meeting. Washington, DC (1–5 April 2017).