We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/nnm-2019-0323

Nanotechnology is paving the way for new carrier systems designed to overcome the greatest challenges of oncolytic virotherapy; systemic administration and subsequent implications of immune responses and specific cell binding and entry. Systemic administration of oncolytic agents is vital for disseminated neoplasms, however transition of nanoparticles (NP) to virotherapy has yielded modest results. Their success relies on how they navigate the merry-go-round of often-contradictory phases of NP delivery: circulatory longevity, tissue permeation and cellular interaction, with many studies postulating design features optimal for each phase. This review discusses the optimal design of NPs for the transport of oncolytic viruses within these phases, to determine whether improved virotherapeutic efficacy lies in the pharmacokinetic/pharmacodynamics characteristics of the NP–oncolytic viruses complexes rather than manipulation of the virus and targeting ligands.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1. Duffy MR, Fisher KD, Seymour LW. Making oncolytic virotherapy a clinical reality: the European contribution. Hum. Gene Ther. 28(11), 1033–1046 (2017).
  • 2. Iwamoto T. Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs. Biol. Pharm. Bull. 36(5), 715–718 (2013).
  • 3. Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Rel. 172(3), 782–794 (2013). • Comprehensive summary of how both nanoparticles (NP) and biological factors can influence NP delivery to tumors.
  • 4. Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 44(22), 8174–8199 (2015).
  • 5. Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin. Drug Deliv. 7(4), 479–495 (2010).
  • 6. Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci. 27(1), 27–36 (2006).
  • 7. Decuzzi P, Lee S, Bhushan B, Ferrari M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33(2), 179–190 (2005).
  • 8. Duan D, Liu H, Xu M et al. Size-controlled synthesis of drug-loaded zeolitic imidazolate framework in aqueous solution and size effect on their cancer theranostics in vivo. ACS Appl. Mater. Interfaces 10(49), 42165–42174 (2018).
  • 9. Mohr K, Sommer M, Baier G et al. Aggregation behaviour of polystyrene-nanoparticles in human blood serum and its impact on the in vivo distribution in mice. J. Nanomed. Nanotechnol. 5(2), 1000193 (2014).
  • 10. Durantie E, Vanhecke D, Rodriguez-Lorenzo L et al. Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface. Part. Fibre Toxicol. 14(1), 49 (2017).
  • 11. Tang L, Yang X, Yin Q et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl Acad. Sci. USA 111(43), 15344–15349 (2014).
  • 12. Kang JH, Cho J, Ko YT. Investigation on the effect of nanoparticle size on the blood–brain tumour barrier permeability by in situ perfusion via internal carotid artery in mice. J. Drug Target. 27(1), 103–110 (2019).
  • 13. Kettiger H, Schipanski A, Wick P, Huwyler J. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int. J. Nanomed. 8, 3255–3269 (2013).
  • 14. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnol. 12, 5 (2014).
  • 15. Sykes EA, Dai Q, Sarsons CD et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc. Natl Acad. Sci. USA 113(9), E1142–1151 (2016). • Tumor interaction with NPs influenced by the size of the NPs as well as tumor volume. Therefore, NP size should be personalized to a patient’s disease state to increase efficacy.
  • 16. Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine 7(5), 580–587 (2011).
  • 17. Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv. 12(1), 129–142 (2015). •• Focuses on the role of nonspherical nanoparticles for cancer drug delivery.
  • 18. Bruckman MA, Randolph LN, Vanmeter A et al. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology 449, 163–173 (2014).
  • 19. Chariou PL, Lee KL, Pokorski JK, Saidel GM, Steinmetz NF. Diffusion and uptake of tobacco mosaic virus as therapeutic carrier in tumor tissue: effect of nanoparticle aspect ratio. J. Phys. Chem. B 120(26), 6120–6129 (2016).
  • 20. Lee SY, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20(49), 495101 (2009).
  • 21. Gratton SE, Ropp PA, Pohlhaus PD et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105(33), 11613–11618 (2008).
  • 22. Favi PM, Valencia MM, Elliott PR et al. Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres. J. Biomed. Mater. Res. A 103(12), 3940–3955 (2015).
  • 23. Favi PM, Gao M, Johana Sepulveda Arango L et al. Shape and surface effects on the cytotoxicity of nanoparticles: gold nanospheres versus gold nanostars. J. Biomed. Mater. Res. A 103(11), 3449–3462 (2015).
  • 24. Armstrong JK, Hempel G, Koling S et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110(1), 103–111 (2007).
  • 25. Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 9(11), 1319–1323 (2012).
  • 26. Hsieh YC, Wang HE, Lin WW et al. Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics 8(11), 3164–3175 (2018).
  • 27. Fix SM, Nyankima AG, Mcsweeney MD, Tsuruta JK, Lai SK, Dayton PA. Accelerated clearance of ultrasound contrast agents containing polyethylene glycol is associated with the generation of anti-polyethylene glycol antibodies. Ultrasound Med. Biol. 44(6), 1266–1280 (2018).
  • 28. Zhang P, Sun F, Liu S, Jiang S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Rel. 244(Pt B), 184–193 (2016).
  • 29. Fu S, Liang M, Wang Y et al. Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl. Mater. Interfaces 11(2), 1841–1854 (2018).
  • 30. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108(27), 10980–10985 (2011).
  • 31. Honary S, Zahir F. Effect of zeta potential on the proeprties of nano-drug delivery systems – a review (Part 2). Tropic. J. Pharm. Res. 12(2), 265–273 (2013).
  • 32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
  • 33. Russell SJ. RNA viruses as virotherapy agents. Cancer Gene Ther. 9(12), 961–966 (2002).
  • 34. Haddad D. Genetically engineered vaccinia viruses as agents for cancer treatment, imaging, and transgene delivery. Front. Oncol. 7, 96 (2017).
  • 35. Sokolowski NA, Rizos H, Diefenbach RJ. Oncolytic virotherapy using herpes simplex virus: how far have we come? Oncolytic Virother. 4, 207–219 (2015).
  • 36. Alemany R. Oncolytic adenoviruses in cancer treatment. Biomedicines 2(1), 36–49 (2014).
  • 37. Brown MC, Dobrikova EY, Dobrikov MI et al. Oncolytic polio virotherapy of cancer. Cancer 120(21), 3277–3286 (2014).
  • 38. Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum. Gene Ther. 13(1), 3–13 (2002).
  • 39. Matsuda T, Karube H, Aruga A. A comparative safety profile assessment of oncolytic virus therapy based on clinical trials. Ther. Innov. Regul. Sci. 52(4), 430–437 (2018).
  • 40. Global Oncolytic Virus Therapy Market Size, Status and Forecast 2018–2025. (2019). www.globenewswire.com/news-release/2019/01/29/1706861/0/en/Global-Oncolytic-Virus-Therapy-Market-to-Collect-More-than-US-13-5-Mn-by-2025-QY-Research-Inc.html
  • 41. Johnson DB, Puzanov I, Kelley MC. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 7(6), 611–619 (2015). •• First US FDA approved oncolytic virus for the treatment of melanoma.
  • 42. Killock D. Skin cancer: T-VEC oncolytic viral therapy shows promise in melanoma. Nat. Rev. Clin. Oncol. 12(8), 438 (2015).
  • 43. Kohlhapp FJ, Zloza A, Kaufman HL. Talimogene laherparepvec (T-VEC) as cancer immunotherapy. Drugs Today (Barc.) 51(9), 549–558 (2015).
  • 44. Geletneky K, Hajda J, Angelova AL et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first Phase I/IIa glioblastoma trial. Mol. Ther. 25(12), 2620–2634 (2017).
  • 45. Donnelly OG, Errington-Mais F, Prestwich R et al. Recent clinical experience with oncolytic viruses. Curr. Pharm. Biotechnol. 13(9), 1834–1841 (2012).
  • 46. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3(6), 841–849 (2017).
  • 47. Motalleb G. Virotherapy in cancer. Iran. J. Cancer Prev. 6(2), 101–107 (2013).
  • 48. Maroun J, Munoz-Alia M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol. 12(4), 193–213 (2017).
  • 49. Ebert O, Harbaran S, Shinozaki K, Woo SL. Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice. Cancer Gene Ther. 12(4), 350–358 (2005).
  • 50. Naik S, Nace R, Barber GN, Russell SJ. Potent systemic therapy of multiple myeloma utilizing oncolytic vesicular stomatitis virus coding for interferon-beta. Cancer Gene Ther. 19(7), 443–450 (2012).
  • 51. Ozduman K, Wollmann G, Piepmeier JM, van den Pol AN. Systemic vesicular stomatitis virus selectively destroys multifocal glioma and metastatic carcinoma in brain. J. Neurosci. 28(8), 1882–1893 (2008).
  • 52. Rommelfanger DM, Wongthida P, Diaz RM et al. Systemic combination virotherapy for melanoma with tumor antigen-expressing vesicular stomatitis virus and adoptive T-cell transfer. Cancer Res. 72(18), 4753–4764 (2012).
  • 53. Phuangsab A, Lorence RM, Reichard KW, Peeples ME, Walter RJ. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett. 172(1), 27–36 (2001).
  • 54. Schirrmacher V, Griesbach A, Ahlert T. Antitumor effects of Newcastle disease virus in vivo: local versus systemic effects. Int. J. Oncol. 18(5), 945–952 (2001).
  • 55. Kottke T, Thompson J, Diaz RM et al. Improved systemic delivery of oncolytic reovirus to established tumors using preconditioning with cyclophosphamide-mediated Treg modulation and interleukin-2. Clin. Cancer Res. 15(2), 561–569 (2009).
  • 56. Ma JL, Han SX, Zhao J et al. Systemic delivery of lentivirus-mediated secretable TAT-apoptin eradicates hepatocellular carcinoma xenografts in nude mice. Int. J. Oncol. 41(3), 1013–1020 (2012).
  • 57. Hodish I, Tal R, Shaish A et al. Systemic administration of radiation-potentiated anti-angiogenic gene therapy against primary and metastatic cancer based on transcriptionally controlled HSV-TK. Cancer Biol. Ther. 8(5), 424–432 (2009).
  • 58. Leoni V, Gatta V, Palladini A et al. Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases. Oncotarget 6(33), 34774–34787 (2015).
  • 59. Auffinger B, Ahmed AU, Lesniak MS. Oncolytic virotherapy for malignant glioma: translating laboratory insights into clinical practice. Front. Oncol. 3, 32 (2013).
  • 60. Kaur B, Chiocca EA, Cripe TP. Oncolytic HSV-1 virotherapy: clinical experience and opportunities for progress. Curr. Pharm. Biotechnol. 13(9), 1842–1851 (2012).
  • 61. Davola ME, Mossman KL. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology 8(6), e1581528 (2019).
  • 62. Brestovitsky A, Sharf R, Mittelman K, Kleinberger T. The adenovirus E4orf4 protein targets PP2A to the ACF chromatin-remodeling factor and induces cell death through regulation of SNF2h-containing complexes. Nucleic Acids Res. 39(15), 6414–6427 (2011).
  • 63. Ito N, Demarco RA, Mailliard RB et al. Cytolytic cells induce HMGB1 release from melanoma cell lines. J. Leukoc. Biol. 81(1), 75–83 (2007).
  • 64. Haanen J. Converting cold into hot tumors by combining immunotherapies. Cell 170(6), 1055–1056 (2017).
  • 65. Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for Talimogene Laherparepvec, a new oncolytic virus immunotherapy. Clin. Cancer Res. 22(5), 1048–1054 (2016).
  • 66. Chaurasiya S, Chen NG, Fong Y. Oncolytic viruses and immunity. Curr. Opin. Immunol. 51, 83–90 (2018).
  • 67. Diaconu I, Cerullo V, Hirvinen ML et al. Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res. 72(9), 2327–2338 (2012).
  • 68. Donnelly OG, Errington-Mais F, Steele L et al. Measles virus causes immunogenic cell death in human melanoma. Gene Ther. 20(1), 7–15 (2013).
  • 69. Workenhe ST, Mossman KL. Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Mol. Ther. 22(2), 251–256 (2014).
  • 70. Breitbach CJ, De Silva NS, Falls TJ et al. Targeting tumor vasculature with an oncolytic virus. Mol. Ther. 19(5), 886–894 (2011).
  • 71. Hou W, Chen H, Rojas J, Sampath P, Thorne SH. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int. J. Cancer 135(5), 1238–1246 (2014).
  • 72. Angarita FA, Acuna SA, Ottolino-Perry K, Zerhouni S, Mccart JA. Mounting a strategic offense: fighting tumor vasculature with oncolytic viruses. Trends Mol. Med. 19(6), 378–392 (2013).
  • 73. Thorne SH, Tam BY, Kirn DH, Contag CH, Kuo CJ. Selective intratumoral amplification of an antiangiogenic vector by an oncolytic virus produces enhanced antivascular and anti-tumor efficacy. Mol. Ther. 13(5), 938–946 (2006).
  • 74. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol. Res. 2(4), 295–300 (2014).
  • 75. Zeng W, Hu P, Wu J et al. The oncolytic herpes simplex virus vector G47 effectively targets breast cancer stem cells. Oncol. Rep. 29(3), 1108–1114 (2013).
  • 76. Simpson GR, Relph K, Harrington K, Melcher A, Pandha H. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother. 5, 1–13 (2016).
  • 77. Kasala D, Lee SH, Hong JW et al. Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus. Biomaterials 145, 207–222 (2017).
  • 78. Tong JG, Valdes YR, Sivapragasam M et al. Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer 17(1), 594 (2017).
  • 79. Filley AC, Dey M. Immune system, friend or foe of oncolytic virotherapy? Front. Oncol. 7, 106 (2017).
  • 80. Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 39(3), 209–221 (2018).
  • 81. Dayton AI. Hitting HIV where it hides. Retrovirology 5, 15 (2008).
  • 82. Di Lorenzo C, Angus AG, Patel AH. Hepatitis C virus evasion mechanisms from neutralizing antibodies. Viruses 3(11), 2280–2300 (2011).
  • 83. Schiffner T, Sattentau QJ, Duncan CJ. Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies. Vaccine 31(49), 5789–5797 (2013).
  • 84. Myers R, Coviello C, Erbs P et al. Polymeric cups for cavitation-mediated delivery of oncolytic vaccinia virus. Mol. Ther. 24(9), 1627–1633 (2016).
  • 85. Nosaki K, Hamada K, Takashima Y et al. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity. Mol. Ther. Oncolytics 3, 16022 (2016).
  • 86. Oh E, Oh JE, Hong J et al. Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. J. Control. Rel. 259, 115–127 (2017).
  • 87. Price DL, Li P, Chen CH et al. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus. Head Neck 38(2), 237–246 (2016).
  • 88. Na Y, Choi JW, Kasala D et al. Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model. J. Control. Rel. 220(Pt B), 766–782 (2015).
  • 89. Yoon AR, Kasala D, Li Y et al. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J. Control. Rel. 231, 2–16 (2016).
  • 90. Grunwald GK, Vetter A, Klutz K et al. Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene. J. Nucl. Med. 54(8), 1450–1457 (2013).
  • 91. Sakurai F, Inoue S, Kaminade T et al. Cationic liposome-mediated delivery of reovirus enhances the tumor cell-killing efficiencies of reovirus in reovirus-resistant tumor cells. Int. J. Pharm. 524(1-2), 238–247 (2017).
  • 92. Shikano T, Kasuya H, Sahin TT et al. High therapeutic potential for systemic delivery of a liposome-conjugated herpes simplex virus. Curr. Cancer Drug Targets 11(1), 111–122 (2011).
  • 93. Yang L, Wang L, Su XQ et al. Suppression of ovarian cancer growth via systemic administration with liposome-encapsulated adenovirus-encoding endostatin. Cancer Gene Ther. 17(1), 49–57 (2010).
  • 94. Yoshida T, Mizuno M, Taniguchi K, Nakayashiki N, Wakabayashi T, Yoshida J. Rat glioma cell death induced by cationic liposome-mediated transfer of the herpes simplex virus thymidine kinase gene followed by ganciclovir treatment. J. Surg. Oncol. 76(1), 19–25 (2001).
  • 95. Balvers RK, Belcaid Z, van den Hengel SK et al. Locally-delivered T-cell-derived cellular vehicles efficiently track and deliver adenovirus delta24-RGD to infiltrating glioma. Viruses 6(8), 3080–3096 (2014).
  • 96. Muthana M, Giannoudis A, Scott SD et al. Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res. 71(5), 1805–1815 (2011). •• Oncolytic adenovirus hidden inside macrophages were activated by hypoxic tumor microenvironment. Selective replication of adenovirus inside prostate tumor cells only resulted in inhibition of tumor growth and pulmonary metastases.
  • 97. Evgin L, Acuna SA, Tanese de Souza C et al. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques. Mol. Ther. 23(6), 1066–1076 (2015).
  • 98. Fulci G, Breymann L, Gianni D et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl Acad. Sci. USA 103(34), 12873–12878 (2006).
  • 99. Lun XQ, Jang JH, Tang N et al. Efficacy of systemically administered oncolytic vaccinia virotherapy for malignant gliomas is enhanced by combination therapy with rapamycin or cyclophosphamide. Clin. Cancer Res. 15(8), 2777–2788 (2009).
  • 100. Haisma HJ, Kamps JA, Kamps GK, Plantinga JA, Rots MG, Bellu AR. Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J. Gen. Virol. 89(Pt 5), 1097–1105 (2008).
  • 101. Liu YP, Tong C, Dispenzieri A, Federspiel MJ, Russell SJ, Peng KW. Polyinosinic acid decreases sequestration and improves systemic therapy of measles virus. Cancer Gene Ther. 19(3), 202–211 (2012).
  • 102. Fulci G, Dmitrieva N, Gianni D et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res. 67(19), 9398–9406 (2007).
  • 103. Denton NL, Chen CY, Hutzen B et al. Myelolytic treatments enhance oncolytic herpes virotherapy in models of Ewing sarcoma by modulating the immune microenvironment. Mol. Ther. Oncolytics 11, 62–74 (2018).
  • 104. Tresilwised N, Pithayanukul P, Mykhaylyk O et al. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force. Mol. Pharm. 7(4), 1069–1089 (2010). •• Magnetic oncolytic virus complexes exhibited stronger oncolytic activity than adenovirus alone when administered intra-tumorally.
  • 105. Choi JW, Park JW, Na Y et al. Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy. Biomaterials 65, 163–174 (2015).
  • 106. Almstatter I, Mykhaylyk O, Settles M et al. Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics 5(7), 667–685 (2015).
  • 107. Wojcik M, Lewandowski W, Krol M et al. Enhancing anti-tumor efficacy of Doxorubicin by non-covalent conjugation to gold nanoparticles – in vitro studies on feline fibrosarcoma cell lines. PLoS ONE 10(4), e0124955 (2015).
  • 108. Lim EK, Sajomsang W, Choi Y et al. Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res. Lett. 8(1), 467 (2013).
  • 109. Korin E, Froumin N, Cohen S. Surface analysis of nanocomplexes by x-ray photoelectron spectroscopy (XPS). ACS Biomater. Sci. Eng. 3, 882–889 (2017).
  • 110. Soldemo M, Adori M, Stark JM et al. Glutaraldehyde cross-linking of HIV-1 env trimers skews the antibody subclass response in mice. Front. Immunol. 8, 1654 (2017).
  • 111. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63(3), 136–151 (2011).
  • 112. Hoyos V, Del Bufalo F, Yagyu S et al. Mesenchymal stromal cells for linked delivery of oncolytic and apoptotic adenoviruses to non-small-cell lung cancers. Mol. Ther. 23(9), 1497–1506 (2015).
  • 113. Parker Kerrigan BC, Shimizu Y, Andreeff M, Lang FF. Mesenchymal stromal cells for the delivery of oncolytic viruses in gliomas. Cytotherapy 19(4), 445–457 (2017).
  • 114. Uldry E, Faes S, Demartines N, Dormond O. Fine-tuning tumor endothelial cells to selectively kill cancer. Int. J. Mol. Sci. 18(7), 1401 (2017).
  • 115. McFadden G, Mohamed MR, Rahman MM, Bartee E. Cytokine determinants of viral tropism. Nat. Rev. Immunol. 9(9), 645–655 (2009).
  • 116. Jhawar SR, Thandoni A, Bommareddy PK et al. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front. Oncol. 7, 202 (2017).
  • 117. Zhou J, Leuschner C, Kumar C, Hormes JF, Soboyejo WO. Sub-cellular accumulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials 27(9), 2001–2008 (2006).
  • 118. Trabulo S, Aires A, Aicher A, Heeschen C, Cortajarena AL. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. Biochim. Biophys. Acta 1861(6), 1597–1605 (2017).
  • 119. Tan PH, Xue SA, Wei B, Holler A, Voss RH, George AJ. Changing viral tropism using immunoliposomes alters the stability of gene expression: implications for viral vector design. Mol. Med. 13(3–4), 216–226 (2007).
  • 120. Maeda H. Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 88(3), 53–71 (2012).
  • 121. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 27(10), 2225–2238 (2016).
  • 122. McDonald D, Stockwin L, Matzow T, Blair Zajdel ME, Blair GE. Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex (MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells. Gene Ther. 6(9), 1512–1519 (1999).
  • 123. Campadelli-Fiume G, Petrovic B, Leoni V et al. Retargeting strategies for oncolytic herpes simplex viruses. Viruses 8(3), 63 (2016).
  • 124. Pereyra AS, Mykhaylyk O, Lockhart EF et al. Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells. J. Nanomed. Nanotechnol. 7(2), 364 (2016).
  • 125. Muthana M, Scott SD, Farrow N et al. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 15(12), 902–910 (2008).
  • 126. Kim J, Hall RR, Lesniak MS, Ahmed AU. Stem cell-based cell carrier for targeted oncolytic virotherapy: translational opportunity and open questions. Viruses 7(12), 6200–6217 (2015).
  • 127. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol. Cancer Ther. 5(3), 755–766 (2006).
  • 128. Ahmed AU, Tyler MA, Thaci B et al. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol. Pharm. 8(5), 1559–1572 (2011).
  • 129. Mooney R, Majid AA, Batalla-Covello J et al. Enhanced delivery of oncolytic adenovirus by neural stem cells for treatment of metastatic ovarian cancer. Mol. Ther. Oncolytics 12, 79–92 (2019).
  • 130. Batist G, Ramakrishnan G, Rao CS et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol. 19(5), 1444–1454 (2001).
  • 131. Gill PS, Wernz J, Scadden DT et al. Randomized Phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J. Clin. Oncol. 14(8), 2353–2364 (1996).
  • 132. Koudelka S, Turanek J. Liposomal paclitaxel formulations. J. Control. Rel. 163(3), 322–334 (2012).
  • 133. Frenkel V, Etherington A, Greene M et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad. Radiol. 13(4), 469–479 (2006).
  • 134. Williams G, Cortazar P, Pazdur R. Developing drugs to decrease the toxicity of chemotherapy. J. Clin. Oncol. 19(14), 3439–3441 (2001).
  • 135. Cosse JP, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med. Chem. 8(7), 790–797 (2008).
  • 136. Baran N, Konopleva M. Molecular pathways: hypoxia-activated prodrugs in cancer therapy. Clin Cancer Res. 23(10), 2382–2390 (2017).
  • 137. Hay JG. The potential impact of hypoxia on the success of oncolytic virotherapy. Curr. Opin. Mol. Ther. 7(4), 353–358 (2005).
  • 138. Pin RH, Reinblatt M, Fong Y. Employing tumor hypoxia to enhance oncolytic viral therapy in breast cancer. Surgery 136(2), 199–204 (2004).
  • 139. Aghi MK, Liu TC, Rabkin S, Martuza RL. Hypoxia enhances the replication of oncolytic herpes simplex virus. Mol. Ther. 17(1), 51–56 (2009).
  • 140. Saint-Cricq P, Deshayes S, Zink JI, Kasko AM. Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core-shell mesoporous silica nanoparticles. Nanoscale 7(31), 13168–13172 (2015).
  • 141. Chen P-J, Hu S-H, Hsiao C-S, Chen Y-Y, Liu D-M, Chen S-Y. Multifunctional magnetically removable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging. J. Mater. Chem. 21(8), 2535–2543 (2011). • The design of multifunctional nanodevices for tunable drug release.
  • 142. Lu YJ, Lin PY, Huang PH et al. Magnetic graphene oxide for dual targeted delivery of doxorubicin and photothermal therapy. Nanomaterials (Basel) 8(4), (2018).
  • 143. Lu Q, Dai X, Zhang P et al. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells. Int. J. Nanomed. 13, 2491–2505 (2018).
  • 144. Zhang L, Sheng D, Wang D et al. Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics 8(6), 1591–1606 (2018).
  • 145. Lu YJ, Wei KC, Ma CC, Yang SY, Chen JP. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces 89, 1–9 (2012).
  • 146. Felfoul O, Mohammadi M, Taherkhani S et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11(11), 941–947 (2016).
  • 147. Yun WS, Choi JS, Ju HM et al. Enhanced homing technique of mesenchymal stem cells using iron oxide nanoparticles by magnetic attraction in olfactory-injured mouse models. Int. J. Mol. Sci. 19(5), (2018).
  • 148. Chen J, Huang N, Ma B et al. Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field. ACS Appl. Mater. Interfaces 5(13), 5976–5985 (2013).
  • 149. Toro-Cordova A, Flores-Cruz M, Santoyo-Salazar J et al. Liposomes loaded with cisplatin and magnetic nanoparticles: physicochemical characterization, pharmacokinetics, and in-vitro efficacy. Molecules 23(9), (2018).
  • 150. Li L, Jiang W, Luo K et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8), 595–615 (2013).
  • 151. Hauser AK, Mitov MI, Daley EF, McGarry RC, Anderson KW, Hilt JZ. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105, 127–135 (2016).
  • 152. Alphandery E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5(8), 6279–6296 (2011).
  • 153. Alphandery E, Idbaih A, Adam C et al. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J. Control. Rel. 262, 259–272 (2017).
  • 154. Le Fevre R, Durand-Dubief M, Chebbi I et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Theranostics 7(18), 4618–4631 (2017).
  • 155. Du X, Zhou J, Xu B. Ectoenzyme switches the surface of magnetic nanoparticles for selective binding of cancer cells. J. Colloid Interface Sci. 447, 273–277 (2015).
  • 156. Muthana M, Kennerley AJ, Hughes R et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat. Commun. 6, 8009 (2015). •• MRI scanners tracked and guided magnetically labeled macrophages from the bloodstream to tumors. Increased tumor macrophage number resulting in reduction in tumor burden.
  • 157. Zablotskii V, Polyakova T, Lunov O, Dejneka A. How a high-gradient magnetic field could affect cell life. Sci. Rep. 6, 37407 (2016).
  • 158. Erdal E, Demirbilek M, Yeh Y et al. A comparative study of receptor-targeted magnetosome and HSA-coated iron oxide nanoparticles as MRI contrast-enhancing agent in animal cancer model. Appl. Biochem. Biotechnol. 185(1), 91–113 (2018).
  • 159. Sun JB, Duan JH, Dai SL et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett. 258(1), 109–117 (2007).
  • 160. Deng Q, Liu Y, Wang S et al. Construction of a novel magnetic targeting anti-tumor drug delivery system: cytosine arabinoside-loaded bacterial magnetosome. Materials (Basel) 6(9), 3755–3763 (2013).
  • 161. Liu YG, Dai QL, Wang SB, Deng QJ, Wu WG, Chen AZ. Preparation and in vitro antitumor effects of cytosine arabinoside-loaded genipin-poly-l-glutamic acid-modified bacterial magnetosomes. Int. J. Nanomed. 10, 1387–1397 (2015).
  • 162. Long RM, Dai QL, Zhou X et al. Bacterial magnetosomes-based nanocarriers for co-delivery of cancer therapeutics in vitro. Int. J. Nanomed. 13, 8269–8279 (2018).
  • 163. Tang YS, Wang D, Zhou C et al. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther. 19(12), 1187–1195 (2012).