We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Systematic Review

Nanoparticles as contrast agents for the diagnosis of Alzheimer’s disease: a systematic review

    Marina Ulanova

    Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia

    ,
    Anne Poljak

    Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia

    Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia

    School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia

    ,
    Wei Wen

    Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia

    ,
    Andre Bongers

    Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia

    Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia

    ,
    Lucy Gloag

    School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia

    Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia

    ,
    Justin Gooding

    School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia

    Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia

    ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, The University of New South Wales, Sydney, NSW, 2052, Australia

    ,
    Richard Tilley

    Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia

    School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia

    Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia

    ,
    Perminder Sachdev

    Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia

    Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW, 2052, Australia

    &
    Nady Braidy

    *Author for correspondence: Tel.: +61 2 9385 8494; Fax: +61 2 9382 3774;

    E-mail Address: n.braidy@unsw.edu.au

    Centre for Healthy Brain Ageing, School of Psychiatry, The University of New South Wales, Sydney, NSW, 2052, Australia

    Published Online:https://doi.org/10.2217/nnm-2019-0316

    Nanoparticle (NP)-based magnetic contrast agents have opened the potential for MRI to be used for early diagnosis of Alzheimer’s disease (AD). This article aims to review the current progress of research in this field. A comprehensive literature search was performed based on PubMed, Medline, EMBASE, PsychINFO and Scopus databases using the following terms: ‘Alzheimer’s disease’ AND ‘nanoparticles’ AND ‘Magnetic Resonance Imaging.’ 33 studies were included that described the development and utility of various NPs for AD imaging, including their coating, functionalization, MRI relaxivity, toxicity and bioavailability. NPs show immense promise for neuroimaging, due to superior relaxivity and biocompatibility compared with currently available imaging agents. Consistent reporting is imperative for further progress in this field.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. World Alzheimer Report 2018. The state of the art of dementia research: new frontiers (2019). www.alz.co.uk/research/WorldAlzheimerReport2018.pdf
    • 2. Jack CR Jr , Holtzman DM . Biomarker modeling of Alzheimer’s disease. Neuron 80(6), 1347–1358 (2013).
    • 3. Fagan AM , Xiong C , Jasielec MS et al. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci. Transl. Med. 6(226), 226ra230 (2014).
    • 4. Carpenter BD , Xiong C , Porensky EK et al. Reaction to a dementia diagnosis in individuals with Alzheimer’s disease and mild cognitive impairment. J. Am. Geriatr. Soc. 56(3), 405–412 (2008).
    • 5. Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 14(3), 367–429 (2018).
    • 6. Patterson C . World Alzheimer Report 2018: The State of the Art of Dementia Research: New Frontiers. Alzheimer’s Disease International, London, UK (2018).
    • 7. Jack CR Jr , Bennett DA , Blennow K et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14(4), 535–562 (2018).
    • 8. Molinuevo JL , Blennow K , Dubois B et al. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement. 10(6), 808–817 (2014).
    • 9. Frisoni GB , Fox NC , Jack CR Jr , Scheltens P , Thompson PM . The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67–77 (2010).
    • 10. Yang L , Rieves D , Ganley C . Brain amyloid imaging – FDA approval of florbetapir F18 injection. N. Engl. J. Med. 367(10), 885–887 (2012).
    • 11. Sabri O , Sabbagh MN , Seibyl J et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase III study. Alzheimers Dement. 11(8), 964–974 (2015).
    • 12. Fantoni ER , Chalkidou A , O’Brien JT , Farrar G , Hammers A . A systematic review and aggregated analysis on the impact of amyloid PET brain imaging on the diagnosis, diagnostic confidence, and management of patients being evaluated for Alzheimer’s disease. J. Alzheimers Dis. 63(2), 783–796 (2018).
    • 13. Xia C-F , Arteaga J , Chen G et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 9(6), 666–676 (2013).
    • 14. Wooten DW , Guehl NJ , Verwer EE et al. Pharmacokinetic evaluation of the tau PET radiotracer (18)F-T807 ((18)F-AV-1451) in human subjects. J. Nucl. Med. 58(3), 484–491 (2017).
    • 15. Lohith TG , Bennacef I , Vandenberghe R et al. Brain imaging of Alzheimer dementia patients and elderly controls with (18)F-MK-6240, a PET tracer targeting neurofibrillary tangles. J. Nucl. Med. 60(1), 107–114 (2019).
    • 16. Saint-Aubert L , Lemoine L , Chiotis K , Leuzy A , Rodriguez-Vieitez E , Nordberg A . Tau PET imaging: present and future directions. Mol. Neurodegener. 12(1), 19 (2017).
    • 17. Betthauser TJ , Ellison PA , Murali D et al. Characterization of the radiosynthesis and purification of [(18)F]THK-5351, a PET ligand for neurofibrillary tau. Appl. Radiat. Isot. 130, 230–237 (2017).
    • 18. Johnson KA , Minoshima S , Bohnen NI et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. J. Nucl. Med. 54(3), 476–490 (2013).
    • 19. Benveniste H , Einstein G , Kim KR , Hulette C , Johnson GA . Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc. Natl Acad. Sci. USA 96(24), 14079–14084 (1999).
    • 20. Jack CR Jr , Garwood M , Wengenack TM et al. In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent . Magn. Reson. Med. 52(6), 1263–1271 (2004).
    • 21. Vanhoutte G , Dewachter I , Borghgraef P , Van Leuven F , Van der Linden A . Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn. Reson. Med. 53(3), 607–613 (2005).
    • 22. Nakada T , Matsuzawa H , Igarashi H , Fujii Y , Kwee IL . In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system . J. Neuroimag. 18(2), 125–129 (2008).
    • 23. Sigurdsson EM , Wadghiri YZ , Mosconi L et al. A non-toxic ligand for voxel-based MRI analysis of plaques in AD transgenic mice. Neurobiol. Aging 29(6), 836–847 (2008).
    • 24. Wadghiri YZ , Hoang DM , Wisniewski T , Sigurdsson EM . In vivo magnetic resonance imaging of amyloid-beta plaques in mice . Methods Mol. Biol. 849, 435–451 (2012).
    • 25. Chen Y , Lim P , Rogers KA , Rutt BK , Ronald JA . In vivo MRI of amyloid plaques in a cholesterol-fed rabbit model of Alzheimer’s disease . J. Alzheimers Dis. 64(3), 911–923 (2018).
    • 26. Monti S , Borrelli P , Tedeschi E , Cocozza S , Palma G . RESUME: turning an SWI acquisition into a fast qMRI protocol. PLoS ONE 12(12), e0189933 (2017).
    • 27. Gong NJ , Dibb R , Bulk M , van der Weerd L , Liu C . Imaging beta amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI. Neuroimage 191, 176–185 (2019).
    • 28. Park SM , Aalipour A , Vermesh O , Yu JH , Gambhir SS . Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2(5), pii: 17014 (2017).
    • 29. Ajetunmobi A , Prina-Mello A , Volkov Y , Corvin A , Tropea D . Nanotechnologies for the study of the central nervous system. Prog. Neurobiol. 123, 18–36 (2014).
    • 30. Huang J , Zhong X , Wang L , Yang L , Mao H . Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2(1), 86–102 (2012).
    • 31. Plascencia-Villa G , Ponce A , Collingwood JF et al. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease. Sci. Rep. 6, 24873 (2016).
    • 32. Tanifum EA , Ghaghada K , Vollert C , Head E , Eriksen JL , Annapragada A . A novel liposomal nanoparticle for the imaging of amyloid plaque by magnetic resonance imaging. J. Alzheimers Dis. 52(2), 731–745 (2016).
    • 33. Cheng KK , Chan PS , Fan S et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44, 155–172 (2015). • Low cytotoxicity (up to 167 mg/ml) of cur-magnetic nanoparticles, considerable blood–brain barrier penetration and many hypointensities in MRI of Tg2576 brain in vivo.
    • 34. Sillerud LO , Solberg NO , Chamberlain R et al. SPION-enhanced magnetic resonance imaging of Alzheimer’s disease plaques in AbetaPP/PS-1 transgenic mouse brain. J. Alzheimers Dis. 34(2), 349–365 (2013).
    • 35. Li SS , Lin CW , Wei KC et al. Non-invasive screening for early Alzheimer’s disease diagnosis by a sensitively immunomagnetic biosensor. Sci. Rep. 6, 25155 (2016).
    • 36. Demeritte T , Nellore BP , Kanchanapally R et al. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer’s disease biomarkers. ACS Appl. Mater. Interfaces 7(24), 13693–13700 (2015).
    • 37. Neely A , Perry C , Varisli B et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 3(9), 2834–2840 (2009).
    • 38. Kouyoumdjian H , Zhu DC , El-Dakdouki MH et al. Glyconanoparticle aided detection of β-amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity. ACS Chem. Neurosci. 4(4), 575–584 (2013).
    • 39. Moher D , Liberati A , Tetzlaff J , Altman DG . PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7), e1000097 (2009).
    • 40. Fernández T , Martínez-Serrano A , Cussó L , Desco M , Ramos-Gómez M . Functionalization and characterization of magnetic nanoparticles for the detection of ferritin accumulation in Alzheimer’s disease. ACS Chem. Neurosci. 9(5), 912–924 (2018).
    • 41. Zhou J , Fa H , Yin W et al. Synthesis of superparamagnetic iron oxide nanoparticles coated with a DDNP-carboxyl derivative for in vitro magnetic resonance imaging of Alzheimer’s disease. Mater. Sci. Eng. C Mater. Biol. Appl. 37, 348–355 (2014).
    • 42. Wadghiri YZ , Sigurdsson EM , Sadowski M et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 50(2), 293–302 (2003).
    • 43. Yang J , Wadghiri YZ , Hoang DM et al. Detection of amyloid plaques targeted by USPIO-Abeta1-42 in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage 55(4), 1600–1609 (2011).
    • 44. Hu B , Dai F , Fan Z , Ma G , Tang Q , Zhang X . Nanotheranostics: congo Red/Rutin‐MNPs with enhanced magnetic resonance imaging and H2O2‐responsive therapy of Alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Adv. Mater. 27(37), 5499–5505 (2015).
    • 45. Nasr Seyedmehdi H , Kouyoumdjian H , Mallett C et al. Detection of β‐amyloid by sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer’s disease. Small 14(3), 1701828 (2017).
    • 46. Wei Y , Quan L , Zhou C , Zhan Q . Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond.) 13(12), 1495–1512 (2018).
    • 47. Solberg NO , Chamberlin R , Vigil JR et al. Optical and SPION-enhanced MR imaging shows that trans-stilbene inhibitors of NF-κB concomitantly lower Alzheimer’s disease plaque formation and microglial activation in AβPP/PS-1 transgenic mouse brain. J. Alzheimers Dis. 40(1), 191–212 (2014).
    • 48. Tsolakis AC , Gounari E , Halevas E , Koliakos GG , Salifoglou A , Litsardakis G . Phagocytosis and cytotoxicity analysis of Thioflavin-T doped silica-coated superparamagnetic iron oxide nanoparticles bound to amyloid beta1–42. IEEE Magn. Lett. 9, 1–5 (2018).
    • 49. Zeng J , Wu J , Li M , Wang P . A novel magnetic nanoparticle for early detection of amyloid plaques in Alzheimer’s disease. Arch. Med. Res. 49(4), 282–285 (2018).
    • 50. Jaruszewski KM , Curran GL , Swaminathan SK et al. Multimodal nanoprobes to target cerebrovascular amyloid in Alzheimer’s disease brain. Biomaterials 35(6), 1967–1976 (2014).
    • 51. Larbanoix L , Burtea C , Ansciaux E et al. Design and evaluation of a 6-mer amyloid-beta protein derived phage display library for molecular targeting of amyloid plaques in Alzheimer’s disease: comparison with two cyclic heptapeptides derived from a randomized phage display library. Peptides 32(6), 1232–1243 (2011).
    • 52. Kim JH , Ha TL , Im GH et al. Magnetic resonance imaging for monitoring therapeutic response in a transgenic mouse model of Alzheimer’s disease using voxel-based analysis of amyloid plaques. Neuroreport 25(4), 211–218 (2014).
    • 53. Koffie RM , Farrar CT , Saidi LJ , William CM , Hyman BT , Spires-Jones TL . Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc. Natl Acad. Sci. USA 108(46), 18837–18842 (2011). • Exploitation of receptor-mediated transcytosis by adsorption of endogenous apoE onto nanoparticle surface.
    • 54. Ansciaux E , Burtea C , Laurent S et al. In vitro and in vivo characterization of several functionalized ultrasmall particles of iron oxide, vectorized against amyloid plaques and potentially able to cross the blood–brain barrier: toward earlier diagnosis of Alzheimer’s disease by molecular imaging . Contrast Media Mol. Imaging 10(3), 211–224 (2015).
    • 55. Poduslo JF , Hultman KL , Curran GL et al. Targeting vascular amyloid in arterioles of Alzheimer disease transgenic mice with amyloid beta protein antibody-coated nanoparticles. J. Neuropathol. Exp. Neurol. 70(8), 653–661 (2011).
    • 56. Tafoya MA , Madi S , Sillerud LO . Superparamagnetic nanoparticle-enhanced MRI of Alzheimer’s disease plaques and activated microglia in 3X transgenic mouse brains: contrast optimization. J. Magn. Reson. Imaging 46(2), 574–588 (2017).
    • 57. Mooradian AD , Chung HC , Shah GN . GLUT-1 expression in the cerebra of patients with Alzheimer’s disease. Neurobiol. Aging 18(5), 469–474 (1997).
    • 58. Sancey L , Kotb S , Truillet C et al. Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano 9(3), 2477–2488 (2015).
    • 59. Yin Z , Yu T , Xu Y . Preparation of amyloid immuno-nanoparticles as potential MRI contrast agents for Alzheimer’s disease diagnosis. J. Nanosci. Nanotechnol. 15(9), 6429–6434 (2015).
    • 60. Kim JH , Ha TL , Im GH et al. Magnetic resonance imaging of amyloid plaques using hollow manganese oxide nanoparticles conjugated with antibody aβ1-40 in a transgenic mouse model. Neuroreport 24(1), 16–21 (2013).
    • 61. Yang CC , Yang SY , Chieh JJ et al. Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro . ACS Chem. Neurosci. 2(9), 500–505 (2011).
    • 62. Plissonneau M , Pansieri J , Heinrich-Balard L et al. Gd-nanoparticles functionalization with specific peptides for β-amyloid plaques targeting. J. Nanobiotechnol. 14(1), 60 (2016).
    • 63. Sillerud LO , Solberg NO , Chamberlain R et al. SPION-enhanced magnetic resonance imaging of Alzheimer’s disease plaques in AbetaPP/PS-1 transgenic mouse brain. J. Alzheimers Dis. 34(2), 349–365 (2013).
    • 64. Andre S , Ansciaux E , Saidi E et al. Validation by magnetic resonance imaging of the diagnostic potential of a heptapeptide-functionalized imaging probe targeted to amyloid-beta and able to cross the blood–brain barrier. J. Alzheimers Dis. 60(4), 1547–1565 (2017).
    • 65. Ahlschwede KM , Curran GL , Rosenberg JT et al. Cationic carrier peptide enhances cerebrovascular targeting of nanoparticles in Alzheimer’s disease brain. Nanomedicine 16, 258–266 (2018).
    • 66. Agyare EK , Jaruszewski KM , Curran GL et al. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J. Control. Rel. 185, 121–129 (2014). •• Conjugation of gadolinium-based contrast agent Magnevist to a chitosan nanovehicle attenuated gadolinium toxicity and accumulation while retaining high-contrast enhancement.
    • 67. Li Y , Xu D , Chan HN et al. Dual-modal NIR-fluorophore conjugated magnetic nanoparticle for imaging amyloid-beta species in vivo . Small 14(28), e1800901 (2018).
    • 68. Wadghiri YZ , Li J , Wang J et al. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. PLoS ONE 8(2), e57097 (2013).
    • 69. Viola KL , Sbarboro J , Sureka R et al. Towards non-invasive diagnostic imaging of early-stage Alzheimer’s disease. Nat. Nanotechnol. 10(1), 91–98 (2015).
    • 70. Plissonneau M , Pansieri J , Heinrich-Balard L et al. Gd-nanoparticles functionalization with specific peptides for s-amyloid plaques targeting. J. Nanobiotechnol. 14(1), 60 (2016).
    • 71. Pansieri J , Plissonneau M , Stransky-Heilkron N et al. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (Lond.) 12(14), 1675–1687 (2017).
    • 72. Pintaske J , Martirosian P , Graf H et al. Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest. Radiol. 41(3), 213–221 (2006).
    • 73. Skaat H , Corem-Slakmon E , Grinberg I et al. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-beta fibrils. Int. J. Nanomedicine 8, 4063–4076 (2013).
    • 74. Sancey L , Lux F , Kotb S et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Brit. J. Radiol. 87(1041), 20140134 (2014).
    • 75. Zhang D , Fa HB , Zhou JT , Li S , Diao XW , Yin W . The detection of beta-amyloid plaques in an Alzheimer’s disease rat model with DDNP-SPIO. Clin. Radiol. 70(1), 74–80 (2015).
    • 76. Ashburn TT , Han H , McGuinness BF , Lansbury PT Jr . Amyloid probes based on Congo Red distinguish between fibrils comprising different peptides. Chem. Biol. 3(5), 351–358 (1996).
    • 77. Tanifum EA , Dasgupta I , Srivastava M et al. Intravenous delivery of targeted liposomes to amyloid-beta pathology in APP/PSEN1 transgenic mice. PLoS ONE 7(10), e48515 (2012).
    • 78. Patil R , Gangalum PR , Wagner S et al. Curcumin targeted, polymalic acid-based MRI contrast agent for the detection of abeta plaques in Alzheimer’s disease. Macromol. Biosci. 15(9), 1212–1217 (2015).
    • 79. Montagne A , Barnes SR , Sweeney MD et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron 85(2), 296–302 (2015).
    • 80. Sweeney MD , Sagare AP , Zlokovic BV . Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133 (2018).
    • 81. Dickstein DL , Biron KE , Ujiie M , Pfeifer CG , Jeffries AR , Jeffries WA . Aβ peptide immunization restores blood–brain barrier integrity in Alzheimer disease. FASEB J. 20(3), 426–433 (2006).
    • 82. Fryer JD , Taylor JW , Demattos RB et al. Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J. Neurosci. 23(21), 7889 (2003).
    • 83. Poduslo JF , Curran GL , Wengenack TM , Malester B , Duff K . Permeability of proteins at the blood–brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 8(4), 555–567 (2001).
    • 84. Van De Haar HJ , Burgmans S , Jansen JFA et al. Blood–brain barrier leakage in patients with early Alzheimer disease. Radiol. 281(2), 527–535 (2016).
    • 85. Dickie BR , Vandesquille M , Ulloa J , Boutin H , Parkes LM , Parker GJM . Water-exchange MRI detects subtle blood–brain barrier breakdown in Alzheimer’s disease rats. Neuroimage 184, 349–358 (2019).
    • 86. Horwood N , Davies DC . Immunolabelling of hippocampal microvessel glucose transporter protein is reduced in Alzheimer’s disease. Virchows Arch. 425(1), 69–72 (1994).
    • 87. Hooijmans CR , Graven C , Dederen PJ , Tanila H , van Groen T , Kiliaan AJ . Amyloid beta deposition is related to decreased glucose transporter-1 levels and hippocampal atrophy in brains of aged APP/PS1 mice. Brain Res. 1181, 93–103 (2007).
    • 88. Shigemoto-Mogami Y , Hoshikawa K , Sato K . Activated microglia disrupt the blood–brain barrier and induce chemokines and cytokines in a rat in vitro model. Front. Cell Neurosci. 12, 494 (2018).
    • 89. Frank S , Burbach GJ , Bonin M et al. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56(13), 1438–1447 (2008).
    • 90. Lue LF , Schmitz CT , Serrano G , Sue LI , Beach TG , Walker DG . TREM2 protein expression changes correlate with Alzheimer’s disease neurodegenerative pathologies in post-mortem temporal cortices. Brain Pathol. 25(4), 469–480 (2015).
    • 91. Wang Y , Cella M , Mallinson K et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160(6), 1061–1071 (2015).
    • 92. Patel MM , Patel BM . Crossing the blood–brain barrier: recent advances in drug delivery to the brain. CNS Drugs 31(2), 109–133 (2017).
    • 93. Songjiang Z , Lixiang W . Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech 10(3), 900 (2009).
    • 94. Santin MD , Debeir T , Bridal SL , Rooney T , Dhenain M . Fast in vivo imaging of amyloid plaques using mu-MRI Gd-staining combined with ultrasound-induced blood–brain barrier opening. Neuroimage 79, 288–294 (2013).
    • 95. Hersh DS , Anastasiadis P , Mohammadabadi A et al. MR-guided transcranial focused ultrasound safely enhances interstitial dispersion of large polymeric nanoparticles in the living brain. PLoS ONE 13(2), e0192240 (2018).
    • 96. Nance E , Timbie K , Miller GW et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood–brain barrier using MRI-guided focused ultrasound. J. Control. Rel. 189, 123–132 (2014).
    • 97. Kang YS , Jung HJ , Oh JS , Song DY . Use of PEGylated immunoliposomes to deliver dopamine across the blood–brain barrier in a rat model of Parkinson’s disease. CNS Neurosci. Ther. 22(10), 817–823 (2016).
    • 98. Ansciaux E , Burtea C , Laurent S et al. In vitro and in vivo characterization of several functionalized ultrasmall particles of iron oxide, vectorized against amyloid plaques and potentially able to cross the blood–brain barrier: toward earlier diagnosis of Alzheimer’s disease by molecular imaging . Contrast Media Mol. Imaging 10(3), 211–224 (2015).
    • 99. Skowronek M , Roterman I , Konieczny L et al. The conformational characteristics of Congo red, Evans blue and Trypan blue. Comput. Chem. 24(3–4), 429–450 (2000).
    • 100. Raymond SB , Treat LH , Dewey JD , McDannold NJ , Hynynen K , Backsai BJ . Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS ONE 3(5), e2175 (2008).
    • 101. Rajan RS , Li T , Aras M et al. Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study. Protein Sci. 15(5), 1063–1075 (2006).
    • 102. Suk JS , Xu Q , Kim N , Hanes J , Ensign LM . PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99(Pt A), 28–51 (2016).
    • 103. Pike CJ , Walencewicz AJ , Glabe CG , Cotman CW . Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures. Eur. J. Pharmacol. 207(4), 367–368 (1991).
    • 104. Zhang Y , McLaughlin R , Goodyer C , LeBlanc A . Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J. Cell Biol. 156(3), 519–529 (2002).
    • 105. Grobner T , Prischl FC . Patient characteristics and risk factors for nephrogenic systemic fibrosis following gadolinium exposure. Semin. Dialysis 21(2), 135–139 (2008).
    • 106. Barbieri S , Schroeder C , Froehlich JM , Pasch A , Theony HC . High signal intensity in dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in three patients with impaired renal function and vascular calcification. Contrast Media Mol. Imaging 11(3), 245–250 (2016).
    • 107. Gallez B , Bacic G , Swartz HM . Evidence for the dissociation of the hepatobiliary MRI contrast agent Mn-DPDP. Magn. Reson. Med. 35(1), 14–19 (1996).
    • 108. Crossgrove J , Zheng W . Manganese toxicity upon overexposure. NMR Biomed. 17(8), 544–553 (2004).
    • 109. Shin J , Anisur RM , Ko MK , Im GH , Lee JH , Lee IS . Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew. Chem. Int. 48(2), 321–324 (2009).
    • 110. An K , Kwon SG , Park M et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 8(12), 4252–4258 (2008).
    • 111. Ahmad A , Bae H , Rhee I . Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T2 contrast agents for magnetic resonance imaging. AIP Adv. 8(5), 055019 (2018).
    • 112. Mahmoudi M , Quinlan-Pluck F , Monopoli MP et al. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem. Neurosci. 4(3), 475–485 (2013).
    • 113. Frohlich E . The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine 7, 5577–5591 (2012).
    • 114. Lundqvist M , Stigler J , Elia G , Lynch I , Cedervall T , Dawson KA . Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105(38), 14265 (2008).
    • 115. Walkey CD , Olsen JB , Guo H , Emili A , Chan WCW . Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134(4), 2139–2147 (2012).
    • 116. Khandhar AP , Keselman P , Kemp SJ et al. Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 9(3), 1299–1306 (2017).
    • 117. Ferguson RM , Khandhar AP , Kemp SJ et al. Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans. Med. Imaging 34(5), 1077–1084 (2015).
    • 118. FDA clears first 7T magnetic resonance imaging device (2019). www.fda.gov/news-events/press-announcements/fda-clears-first-7t-magnetic-resonance-imaging-device
    • 119. Lam T , Pouliot P , Avti PK , Lesage F , Kakkar AK . Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv. Colloid Interfac. 199–200, 95–113 (2013).
    • 120. McGrath AJ , Dolan C , Cheong S et al. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging. J. Magn. Magn. Mater. 439, 251–258 (2017).
    • 121. Tong S , Hou S , Zheng Z , Zhou J , Bao G . Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 10(11), 4607–4613 (2010).
    • 122. Liu Y , Wang Y , Zhou S et al. Synthesis of high saturation magnetization superparamagnetic Fe3O4 hollow microspheres for swift chromium removal. ACS Appl. Mater. Interfaces 4(9), 4913–4920 (2012).
    • 123. Maher BA , Ahmed IAM , Karloukovski V et al. Magnetite pollution nanoparticles in the human brain. Proc. Natl Acad. Sci. USA 113(39), 10797 (2016).
    • 124. McGrath AJ , Cheong S , Henning AM , Gooding JJ , Tilley RD . Size and shape evolution of highly magnetic iron nanoparticles from successive growth reactions. Chem. Commun. (Camb.) 53(84), 11548–11551 (2017).
    • 125. Cheong S , Ferguson P , Feindel KW et al. Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew. Chem. 123(18), 4292–4295 (2011).
    • 126. Faria M , Björnmalm M , Thurecht KJ et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13(9), 777–785 (2018). • Minimum information standard guidelines for bio-nanoresearch to improve reported research quality.
    • 127. Mahmoudi M , Laurent S , Shokrgozar MA , Hosseinkhani M . Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5(9), 7263–7276 (2011).
    • 128. Toth GB , Varallyay CG , Horvath A et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 92(1), 47–66 (2017).
    • 129. Mundt AP , Winter C , Mueller S et al. Targeting activated microglia in Alzheimer’s pathology by intraventricular delivery of a phagocytosable MRI contrast agent in APP23 transgenic mice. Neuroimage 46(2), 367–372 (2009).
    • 130. Fernandez-Cabada T , Ramos-Gomez M . A novel contrast agent based on magnetic nanoparticles for cholesterol detection as Alzheimer’s disease biomarker. Nanoscale Res. Lett. 14(1), 36 (2019).
    • 131. Zhou XY , Tay ZW , Chandrasekharan P et al. Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. Curr. Opin. Chem. Biol. 45, 131–138 (2018).