We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Effects of silver and gold nanoparticles phytosynthesized with Cornus mas extract on oral dysplastic human cells

    Ioana Baldea

    Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, Cluj-Napoca, Romania

    ,
    Adrian Florea

    Department of Cell & Molecular Biology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, Cluj-Napoca, Romania

    ,
    Diana Olteanu

    Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, Cluj-Napoca, Romania

    ,
    Simona Clichici

    Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, Cluj-Napoca, Romania

    ,
    Luminita David

    *Author for correspondence: Tel.: 40 264 593833; Fax: 40 264 590818;

    E-mail Address: muntean@chem.ubbcluj.ro

    Faculty of Chemistry & Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania

    ,
    Bianca Moldovan

    Faculty of Chemistry & Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania

    ,
    Mihai Cenariu

    Department of Animal Reproduction, University of Agricultural Sciences & Veterinary Medicine, Cluj-Napoca, Romania

    ,
    Marcela Achim

    Department of Pharmaceutical Technology & Biopharmaceutics, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania

    ,
    Ramona Suharoschi

    Faculty of Food Science & Technology, University of Agricultural Sciences & Veterinary Medicine, Cluj-Napoca, Romania

    ,
    Sorina Danescu

    Department of Dermatology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, Cluj-Napoca, Romania

    ,
    Adriana Vulcu

    National Institute for Research & Development of Isotopic & Molecular Technologies, Cluj-Napoca, Romania

    &
    Gabriela Adriana Filip

    Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, Cluj-Napoca, Romania

    Published Online:https://doi.org/10.2217/nnm-2019-0290

    Background: Oral cancer is highly aggressive due to difficult diagnosis, therapy resistance and increasing frequency; thus finding prevention therapies is very important. Aim: This study evaluates the use of gold and silver nanoparticles (NPs), phyto-synthesized with Cornus mas extract against oral dysplastic lesions. Methods: NPs were characterized by UV–Vis, Fourier-transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and laser Doppler microelectrophoresis. Biological testing employed two human oral cell lines: gingival fibroblasts and dysplastic keratinocytes and evaluated viability, cell death mechanisms and cellular uptake. Results: NPs induced selective toxic effects against dysplastic cells. p53/BAX/BCL2 activation and PI3K/AKT inhibition led to cell death through necrosis and apoptosis. NPs also induced antioxidant and anti-inflammatory effects. Conclusion: NPs of gold and silver showed promising beneficial effects in the therapy of oral dysplasia.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Virupakshappa B. Applications of nanomedicine in oral cancer. Oral Health Dent. Manag. 11(2), 62–68 (2012). • This review synthesizes the research studies about the use of nanoparticles in oral cancer.
    • 2. Shield KD, Ferlay J, Jemal A et al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012. CA: Cancer J. Clin. 67(1), 51–64 (2017).
    • 3. Ghantous Y, Abu Elnaaj I. Global incidence and risk factors of oral cancer. Harefuah 156(10), 645–649 (2017).
    • 4. Azhar N, Sohail M, Ahmad F et al. Risk factors of oral cancer: a hospital based case control study. J. Clin. Exp. Dent. 10(4), e396–e401 (2018).
    • 5. Niaz K, Maqbool F, Khan F, Bahadar H, Ismail Hassan F, Abdollahi M. Smokeless tobacco (paan and gutkha) consumption, prevalence, and contribution to oral cancer. Epidemiol. Health 39, e2017009 (2017).
    • 6. Poonia M, Ramalingam K, Goyal S, Sidhu SK. Nanotechnology in oral cancer: a comprehensive review. J. Oral Maxillofac. Pathol. 21(3), 407–414 (2017). •• Shows the roles of different nanoparticles in the diagnosis and therapy of oral cancer.
    • 7. Maman P, Nagpal M, Gilhotra RM, Aggarwal G. Nano era of dentistry: an update. Curr. Drug Deliv. 15(2), 186–204 (2018).
    • 8. Filip A, Potara M, Florea A et al. Comparative evaluation by scanning confocal Raman spectroscopy and transmission electron microscopy of therapeutic effects of noble metal nanoparticles in experimental acute inflammation. RSC Adv. 5, 67435–67448 (2015).
    • 9. Guo J, Rahme K, He Y, Li LL, Holmes JD, O'Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomedicine 12, 6131–6152 (2017).
    • 10. Yao C, Zhang L, Wang J et al. Gold nanoparticle mediated phototherapy for cancer. J. Nanomater. 2016, Article ID: 5497136 (2016).
    • 11. Sanjay Reddy P, Ramaswamy P, Sunanda C, Milanjeet. Role of gold nanoparticles in early detection of oral cancer. JAOMR 22(1), 30–33 (2010).
    • 12. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5(5), 829–834 (2005).
    • 13. Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin. J. Nanobiotechnology 10, 19 (2012).
    • 14. Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85(7), 743–750 (2011).
    • 15. Nagalingam M, Kalpana V, Devi Rajeswari V, Panneerselvam A. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnol. Rep. (Amst.) 19, e00268 (2018).
    • 16. Galluzzi L, Vitale I, Aaronson SA et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25(3), 486–541 (2018). •• Describes the different types of cell death and their underlining mechanisms.
    • 17. Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol. Lett. 213(2), 249–259 (2012).
    • 18. De Matteis V, Malvindi MA, Galeone A et al. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomedicine 11(3), 731–739 (2015).
    • 19. Mukherjee S, Chowdhury D, Kotcherlakota R et al. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4(3), 316–335 (2014).
    • 20. Filip GA, Moldovan B, Baldea I et al. UV-light mediated green synthesis of silver and gold nanoparticles using Cornelian cherry fruit extract and their comparative effects in experimental inflammation. J. Photochem. Photobiol. B Biol. 191, 26–37 (2019).
    • 21. Khan HA, Abdelhalim MA, Alhomida AS, Al-Ayed MS. Effects of naked gold nanoparticles on proinflammatory cytokines mRNA expression in rat liver and kidney. Biomed. Res. Int. 2013, 590730( 2013).
    • 22. Abdelhalim MA, Jarrar BM. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles. Lipids Health Dis. 10, 163 (2011).
    • 23. Frankova J, Pivodova V, Vagnerova H, Juranova J, Ulrichova J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater. 14(2), e137–e142 (2016).
    • 24. Bhol KC, Schechter PJ. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Dig. Dis. Sci. 52(10), 2732–2742 (2007).
    • 25. Crisan D, Scharffetter-Kochanek K, Crisan M et al. Topical silver and gold nanoparticles complexed with Cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-kappaB activity. Exp. Dermatol. 27(10), 1166–1169 (2018).
    • 26. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Methods in Enzymology (Volume 299). Paker L (Ed.). Academic Press, CA, USA, 152–178 (1999).
    • 27. David L, Moldovan B, Vulcu A et al. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces 122, 767–777 (2014).
    • 28. Perde-Schrepler M, David L, Olenic L et al. Gold nanoparticles synthesized with a polyphenols-rich extract from Cornelian cherry (Cornus mas) fruits: effects on human skin cells. J. Nanomater. 2016, 6986370 (2016).
    • 29. Olteanu D, Baldea I, Clichici S et al. In vitro studies on the mechanisms involved in chemoprevention using Calluna vulgaris on vascular endothelial cells exposed to UVB. J. Photochem. Photobiol. B Biol. 136, 54–61 (2014).
    • 30. Baldea I, Olteanu DE, Bolfa P et al. Efficiency of photodynamic therapy on WM35 melanoma with synthetic porphyrins: role of chemical structure, intracellular targeting and antioxidant defense. J. Photochem. Photobiol. B Biol. 151, 142–152 (2015).
    • 31. Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 233, 380–385 (1994).
    • 32. Moldovan B, Sincari V, Perde-Schrepler M, David L. Biosynthesis of silver nanoparticles using Ligustrum ovalifolium fruits and their cytotoxic effects. Nanomaterials 8(8), 627 (2018).
    • 33. Moldovan B, Popa A, David L. Effects of storage temperature on the total phenolic content of Cornelian cherry (Cornus mas L.) fruits extracts. J. Appl. Bot. Food Qual. 89, 208–211 (2016).
    • 34. Moldovan B, David L. Bioactive flavonoids from Cornus mas L. fruits. Mini Rev. Org. Chem. 14, 489–495 (2017).
    • 35. Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 124, 148–154 (2019).
    • 36. Hirsch LR, Stafford RJ, Bankson JA et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100(23), 13549–13554 (2003).
    • 37. Danila OO, Berghian AS, Dionisie V et al. The effects of silver nanoparticles on behavior, apoptosis and nitro-oxidative stress in offspring Wistar rats. Nanomedicine (Lond.) 12(12), 1455–1473 (2017).
    • 38. Gordijn B. Nanoethics: from utopian dreams and apocalyptic nightmares towards a more balanced view. Sci. Eng. Ethics 11(4), 521–533 (2005).
    • 39. Opris R, Tatomir C, Olteanu D et al. The effect of Sambucus nigra L. extract and phytosinthesized gold nanoparticles on diabetic rats. Colloids Surf. B Biointerfaces 150, 192–200 (2017).
    • 40. Antony JJ, Sivalingam P, Chen B. Toxicological effects of silver nanoparticles. Environ. Toxicol. Pharmacol. 40(3), 729–732 (2015).
    • 41. Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK. Cell selective response to gold nanoparticles. Nanomedicine 3(2), 111–119 (2007).
    • 42. Zhang XF, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int. J. Mol. Sci. 17(10), E1603 (2016). •• Reviews the effects and mechanisms of action of silver nanoparticles, depending on size, charge and shape in different cell lines, including epithelial cells.
    • 43. Vijayakumar S, Ganesan S. In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. J. Nanomater. Article ID, 734398 (2012).
    • 44. Pan Y, Neuss S, Leifert A et al. Size-dependent cytotoxicity of gold nanoparticles. Small 3(11), 1941–1949 (2007).
    • 45. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 11, Article number: 11 (2014).
    • 46. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 13, 8013–8024 (2018).
    • 47. Comfort KK, Maurer EI, Braydich-Stolle LK, Hussain SM. Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5(12), 10000–10008 (2011). • Demonstrates the inhibition of epidermal growth factor signal transduction by gold and silver nanoparticles in human epidermoid carcinoma cells.
    • 48. Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7(6), 1542–1550 (2007).
    • 49. Stoehr LC, Gonzalez E, Stampfl A et al. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part. Fibre Toxicol. 8, 425–430 (2011).
    • 50. Zhai Y, Hunting ER, Wouters M, Peijnenburg WJ, Vijver MG. Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. Front. Microbiol. 7, 1123 (2016).
    • 51. Ostaszewska T, Sliwinski J, Kamaszewski M, Sysa P, Chojnacki M. Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Environ. Sci. Pollut. Res. Int. 25(1), 908–915 (2018).
    • 52. Katsnelson BA, Privalova LI, Gurvich VB et al. Comparative in vivo assessment of some adverse bioeffects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver's effects with a complex of innocuous bioprotectors. Int. J. Mol. Sci. 14(2), 2449–2483 (2013).
    • 53. Liu X, Lee PY, Ho CM et al. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem 5(3), 468–475 (2010).
    • 54. Lau P, Bidin N, Islam S et al. Influence of gold nanoparticles on wound healing treatment in rat model: photobiomodulation therapy. Lasers Surg. Med. 49(4), 380–386 (2017).
    • 55. Pivodova V, Frankova J, Galandakova A, Ulrichova J. In vitro AuNPs' cytotoxicity and their effect on wound healing. Nanobiomedicine (Rij) 2, 7 (2015).
    • 56. Zheng Y, Gierut J, Wang Z, Miao J, Asara JM, Tyner AL. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene 32(36), 4304–4312 (2013).
    • 57. Salvador-Gallego R, Mund M, Cosentino K et al. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J. 35(4), 389–401 (2016).
    • 58. Mcshan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 22(1), 116–127 (2014).
    • 59. Yun CW, Lee SH. The roles of autophagy in cancer. Int. J. Mol. Sci. 19(11), E3466 (2018).
    • 60. Banath JP, Klokov D, Macphail SH, Banuelos CA, Olive PL. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 10, 4 (2010).
    • 61. May S, Hirsch C, Rippl A et al. Transient DNA damage following exposure to gold nanoparticles. Nanoscale 10(33), 15723–15735 (2018).
    • 62. Cardoso E, Rezin GT, Zanoni ET et al. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats. Mutat. Res. 766–767; 25–30 (2014).
    • 63. Cardoso E, Londero E, Kozuchovski Ferreira G et al. Gold nanoparticles induce DNA damage in the blood and liver of rats. J. Nanopart. Res. 16, 2727 (2014).
    • 64. Nallanthighal S, Chan C, Murray TM, Mosier AP, Cady NC, Reliene R. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice. Nanotoxicology 11(8), 996–1011 (2017).
    • 65. Chatterjee N, Eom HJ, Choi J. Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. Environ. Mol. Mutagen. 55(2), 122–133 (2014).
    • 66. Grzelak A, Wojewodzka M, Meczynska-Wielgosz S, Zuberek M, Wojciechowska D, Kruszewski M. Crucial role of chelatable iron in silver nanoparticles induced DNA damage and cytotoxicity. Redox Biol. 15, 435–440 (2018). • Demonstrates that the silver nanoparticles toxicity is linked to free radicals induced damage through the Fenton reaction.
    • 67. Fehaid A, Taniguchi A. Size-dependent effect of silver nanoparticles on the tumor necrosis factor alpha-induced DNA damage response. Int. J. Mol. Sci. 20(5), E1038 (2019). •• Shows that the oxidative DNA damage induced by TNF-α is modulated by silver nanoparticle size: decreased by small nanoparticles and increased by big nanoparticles, in epithelial lung cells.