We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management

    Deti Nurhidayah

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China

    ,
    Ali Maruf

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China

    ,
    Xiaojuan Zhang

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China

    ,
    Xiaoling Liao

    Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science & Technology, Chongqing 401331, China

    ,
    Wei Wu

    *Authors for correspondence:

    E-mail Address: wanggx@cqu.edu.cn

    ;

    E-mail Address: david2015@cqu.edu.cn

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China

    &
    Guixue Wang

    *Authors for correspondence:

    E-mail Address: wanggx@cqu.edu.cn

    ;

    E-mail Address: david2015@cqu.edu.cn

    Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China

    Published Online:https://doi.org/10.2217/nnm-2019-0172

    Nanoplatforms have been used extensively as advanced carriers to enhance the effectiveness of drug delivery, mostly through passive aggregation provided by the enhanced permeability and retention effect. Mechanical stimuli provide a robust strategy to bolster drug delivery performance by increasing the accumulation of nanoplatforms at the lesion sites, facilitating on-demand cargo release and providing theranostic aims. In this review, we focus on recent advances of mechanoresponsive nanoplatforms that can accomplish targeted drug delivery, and subsequent drug release, under specific stimuli, either endogenous (shear stress) or exogenous (magnetic field and ultrasound), to synergistically combat atherosclerosis at the molecular level.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Benjamin E, Muntner P, Alonso A et al. Heart disease and stroke statistics-2019 update. Circulation 139(10), e56–e66 (2019).
    • 2. Roth GA, Abate D, Abate KH et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017. Lancet 392(10159), 1736–1788 (2018).
    • 3. Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature 451(7181), 953–957 (2008).
    • 4. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17(11), 1410–1422 (2011).
    • 5. Benjamin EJ, Virani SS, Callaway CW et al. Heart disease and stroke statistics-2018 update: a report from The American Heart Association. Circulation 137(12), e67–e492 (2018).
    • 6. Costopoulos C, Brown AJ, Teng Z et al. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis. Int. J. Cardiovasc. Imaging 32(1), 189–200 (2016).
    • 7. Keraliya AR, Blankstein R. Regression of coronary atherosclerosis with medical therapy. N. Engl. J. Med. 376(14), 1370 (2017).
    • 8. Conte MS, Pomposelli FB, Clair DG et al. Society for vascular surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J. Vasc. Surg. 61(3), S2–S41 (2015).
    • 9. Shilov VV, Belevitin AB, Khubulava GG et al. Surgical treatment of patients with postinfarction aneurysm of the left ventricle in combination with atherosclerotic lesion of the lower extremity arteries. Vestn. Khir. Im. I. I. Grek. 166(5), 19–23 (2007).
    • 10. Cooper CJ, Murphy TP, Cutlip DE et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N. Engl. J. Med. 370(1), 13–22 (2014).
    • 11. Wu X, Wang G, Tang C et al. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent. J. Biomed. Mater. Res. A 98A(3), 442–449 (2011).
    • 12. Zhang Q, Shen Y, Tang C, Wu X, Yu Q, Wang G. Surface modification of coronary stents with SiCOH plasma nanocoatings for improving endothelialization and anticoagulation. J. Biomed. Mater. Res. B Appl. Biomater. 103(2), 464–472 (2015).
    • 13. Wu X, Yin T, Tian J et al. Distinctive effects of CD34- and CD133-specific antibody-coated stents on re-endothelialization and in-stent restenosis at the early phase of vascular injury. Regen. Biomater. 2(2), 87–96 (2015).
    • 14. Sun D, Zheng Y, Yin T, Tang C, Yu Q, Wang G. Coronary drug-eluting stents: from design optimization to newer strategies. J. Biomed. Mater. Res. A 102(5), 1625–1640 (2014).
    • 15. Zhao Y, Du R, Zhou T et al. Arsenic trioxide-coated stent is an endothelium-friendly drug eluting stent. Adv. Healthc. Mater. 7(15), 1800207 (2018).
    • 16. Du R, Wang Y, Huang Y et al. Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating. NPG Asia Mater. 10(7), 642–658 (2018).
    • 17. Yang C, Yang J, Fu M et al. Cytotoxic effects of docetaxel as a candidate drug of drug-eluting stent on human umbilical vein endothelial cells and the signaling pathway of cell migration inhibition, adhesion delay and shape change. Regen. Biomater. 4(3), 167–178 (2017).
    • 18. Hu T, Lin S, Du R et al. Design, preparation and performance of a novel drug-eluting stent with multiple layer coatings. Biomater. Sci. 5(9), 1845–1857 (2017).
    • 19. Hu T, Yang J, Cui K et al. Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: Recent progress and future prospects. ACS Appl. Mater. Interfaces 7(22), 11695–11712 (2015).
    • 20. Malik N, Francis SE, Holt CM et al. Apoptosis and cell proliferation after porcine coronary angioplasty. Circulation 98(16), 1657–1665 (1998).
    • 21. Michos ED, Sibley CT, Baer J, Blaha MJ, Blumenthal RS. Niacin and statin combination therapy for atherosclerosis regression and prevention of cardiovascular disease events: reconciling the AIM-HIGH (atherothrombosis intervention in metabolic syndrome with low HDL/High triglycerides: impact on global health outcomes) trial with previous surrogate endpoint trials. J. Am. Coll. Cardiol. 59(23), 2058–2064 (2012).
    • 22. Tian J, Gu X, Sun Y et al. Effect of statin therapy on the progression of coronary atherosclerosis. BMC Cardiovasc. Disord. 12(1), 70 (2012).
    • 23. Stroes ESG, Thompson PD, Corsini A et al. Statin-associated muscle symptoms: impact on statin therapy—European atherosclerosis society consensus panel statement on assessment, aetiology and management. Eur. Heart J. 36(17), 1012–1022 (2015).
    • 24. Martin SS, Blaha MJ, Blankstein R et al. Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease implications for statin therapy from the multi-ethnic study of atherosclerosis. Circulation 129(1), 77–86 (2014).
    • 25. Xu J, Yang W, Deng Q, Huang Q, Yang JE, Huang F. Flaxseed oil and α-lipoic acid combination reduces atherosclerosis risk factors in rats fed a high-fat diet. Lipids Health Dis. 11(1), 148 (2012).
    • 26. Yi X, Xu L, Hiller S, Kim HS, Maeda N. Reduced α-lipoic acid synthase gene expression exacerbates atherosclerosis in diabetic apolipoprotein E-deficient mice. Atherosclerosis 223(1), 137–143 (2012).
    • 27. Shen D, Tian L, Shen T, Sun H, Liu P. α-lipoic acid protects human aortic endothelial cells against H2O2-induced injury and inhibits atherosclerosis in ovariectomized low density lipoprotein receptor knock-out mice. Cellular Physiol. Biochem. 47(6), 2261–2277 (2018).
    • 28. Peguero JG, Arenas IA, Lamas GA. Chelation therapy and cardiovascular disease: connecting scientific silos to benefit cardiac patients. Trends Cardiovasc. Med. 24(6), 232–240 (2014).
    • 29. Lamas GA, Navasacien A, Mark DB, Lee KL. Heavy metals, cardiovascular disease, and the unexpected benefits of chelation therapy. J. Am. Coll. Cardiol. 67(20), 2411–2418 (2016).
    • 30. Rathmann KL, Golightly LK. Chelation therapy of atherosclerosis. Ann. Pharmacother. 18(12), 1000–1003 (1984).
    • 31. Karimi M, Zare H, Nik AB et al. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine 11(5), 513–530 (2016).
    • 32. Wang Y, Wang G. Polymeric nanomicelles: a potential hazard for the cardiovascular system? Nanomedicine 12(12), 1355–1358 (2017).
    • 33. Fakruddin, Hossain Z, Afroz H. Prospects and applications of nanobiotechnology: a medical perspective. J. Nanobiotechnol. 10(1), 31 (2012).
    • 34. Wu W, Ye C, Xiao H et al. Hierarchical mesoporous silica nanoparticles for tailorable drug release. Int. J. Pharm. 511(1), 65–72 (2016).
    • 35. Wu W, Wang W, Li J. Star polymers: advances in biomedical applications. Prog. Polym. Sci. 46, 55–85 (2015).
    • 36. Li R-Q, Wu W, Song H-Q et al. Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Acta Biomater. 41, 282–292 (2016).
    • 37. Cao S, Liu Y, Shang H et al. Supramolecular nanoparticles of calcitonin and dipeptide for long-term controlled release. J. Control. Release 256, 182–192 (2017).
    • 38. Yang X, Huang P, Wang H et al. Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid. Colloids Surf. B. Biointerfaces 160, 136–143 (2017).
    • 39. Liu Y, Chen X, Li S et al. Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy. ACS Appl. Mater. Interfaces 9(28), 23428–23440 (2017).
    • 40. Bamrungsap S, Zhao Z, Chen T et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7(8), 1253–1271 (2012).
    • 41. Barenholz Y. Doxil®-The first FDA-approved nano-drug: lessons learned. J. Control. Release 160(2), 117–134 (2012).
    • 42. Crielaard BJ, Lammers T, Schiffelers RM, Storm G. Drug targeting systems for inflammatory disease: one for all, all for one. J. Control. Release 161(2), 225–234 (2012).
    • 43. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11(17–18), 812–818 (2006).
    • 44. Luo L, Wu W, Sun D et al. Acid-activated melittin for targeted and safe antitumor therapy. Bioconjug. Chem. 29(9), 2936–2944 (2018).
    • 45. Zhong Y, Wang Y, Luo L et al. Targeted polyethylenimine/(p53 plasmid) nanocomplexes for potential antitumor applications. Nanotechnology 30(14), 145601 (2019).
    • 46. Maeda H, Greish K, Fang J. The EPR effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. In: Polymer Therapeutics II. Satchi-Fainaro RDuncan R (Eds). Springer, Heidelberg, NY, 103–121 (2006).
    • 47. England CG, Im H-J, Feng L et al. Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials 100, 101–109 (2016).
    • 48. Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Cancer Nanotechnology. Grobmyer SRMoudgil BM (Eds). Humana Press, NJ, USA, 25–37 (2010).
    • 49. Wu W, Wang J, Lin Z, Li X, Li J. Tumor-acidity activated surface charge-conversion of polymeric nanocarriers for enhanced cell adhesion and targeted drug release. Macromol. Rapid Commun. 35(19), 1679–1684 (2014).
    • 50. Prabhakar U, Maeda H, Jain RK et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73(8), 2412–2417 (2013).
    • 51. Zhang K, Chen Y, Zhang T et al. A novel role of Id1 in regulating oscillatory shear stress-mediated lipid uptake in endothelial cells. Ann. Biomed. Eng. 46(6), 849–863 (2018).
    • 52. Wei D, Chen Y, Tang C et al. LDL decreases the membrane compliance and cell adhesion of endothelial cells under fluid shear stress. Ann. Biomed. Eng. 41(3), 611–618 (2013).
    • 53. Wang Y, Qiu J, Luo S et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen. Biomater. 3(4), 257–267 (2016).
    • 54. Qiu J, Lei D, Hu J et al. Effect of intraplaque angiogenesis to atherosclerotic rupture-prone plaque induced by high shear stress in rabbit model. Regen. Biomater. 4(4), 215–222 (2017).
    • 55. Xie X, Tan J, Wei D et al. In vitro and in vivo investigations on the effects of low-density lipoprotein concentration polarization and haemodynamics on atherosclerotic localization in rabbit and zebrafish. J. R. Soc. Interface 10(82), 20121053 (2013).
    • 56. Chen T, Wu W, Xiao H, Chen Y, Chen M, Li J. Intelligent drug delivery system based on mesoporous silica nanoparticles coated with an ultra-pH-sensitive gatekeeper and poly(ethylene glycol). ACS Macro Lett. 5(1), 55–58 (2016).
    • 57. Li S, Zhao Z, Wu W, Ding C, Li J. Dual pH-responsive micelles with both charge-conversional property and hydrophobic–hydrophilic transition for effective cellular uptake and intracellular drug release. Polym. Chem. 7(12), 2202–2208 (2016).
    • 58. Wu W, Li S, Lin Z, Li J. pH-sensitive nanocarriers for enhanced tumor retention and rapid intracellular drug release. J. Control. Release 213, e111–e112 (2015).
    • 59. Wu W, Chen M, Wang J et al. Nanocarriers with dual pH-sensitivity for enhanced tumor cell uptake and rapid intracellular drug release. RSC Adv. 4(58), 30780–30783 (2014).
    • 60. Wu W, Luo L, Wang Y et al. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 8(11), 3038–3058 (2018).
    • 61. Li S, Wu W, Xiu K, Xu F, Li Z, Li J. Doxorubicin loaded pH-responsive micelles capable of rapid intracellular drug release for potential tumor therapy. J. Biomed. Nanotechnol. 10(8), 1480–1489 (2014).
    • 62. Shang H, Chen X, Liu Y, Yu L, Li J, Ding J. Cucurbit [7]-assisted sustained release of human calcitonin from thermosensitive block copolymer hydrogel. Int. J. Pharm. 527(1-2), 52–60 (2017).
    • 63. Xie J, Li A, Li J. Advances in pH-sensitive polymers for smart insulin delivery. Macromol. Rapid Commun. 38(23), 1700413 (2017).
    • 64. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 137(6), 2140–2154 (2015).
    • 65. Fernandes DC, Araujo TL, Laurindo FR, Tanaka LY. Chapter 7 - Hemodynamic forces in the endothelium: from mechanotransduction to implications on development of atherosclerosis. In: Endothelium and Cardiovascular Diseases. Da Luz PLLibby PChagas ACPLaurindo FRM (Eds). Academic Press, London, UK, 85–95 (2018).
    • 66. Da Luz PL, Chagas ACP, Dourado PMM, Laurindo FR. Chapter 33 - Endothelium in atherosclerosis: plaque formation and its complications. In: Endothelium and Cardiovascular Diseases. Da Luz PLLibby PChagas ACPLaurindo FRM (Eds). Academic Press, London, UK, 493–512 (2018).
    • 67. Mccarty OJT, Conley RB, Shentu W et al. Molecular imaging of activated von willebrand factor to detect high-risk atherosclerotic phenotype. JACC Cardiovasc. Imaging 3(9), 947–955 (2010).
    • 68. Yoo D, Lee J-H, Shin T-H, Cheon J. Theranostic magnetic nanoparticles. Acc. Chem. Res. 44(10), 863–874 (2011).
    • 69. Wootton DM, Alevriadou BR. The shear stress of busting blood clots. N. Engl. J. Med. 367(14), 1361–1363 (2012).
    • 70. Saxer T, Zumbuehl A, Muller B. The use of shear stress for targeted drug delivery. Cardiovasc. Res. 99(2), 328–333 (2013).
    • 71. Westein E, Flierl U, Hagemeyer CE, Peter K. Destination known: targeted drug delivery in atherosclerosis and thrombosis. Drug Dev. Res. 74(7), 460–471 (2013).
    • 72. Schiener M, Hossann M, Viola JR et al. Nanomedicine-based strategies for treatment of atherosclerosis. Trends Cardiovasc. Med. 20(5), 271–281 (2014).
    • 73. Cicha I. Strategies to enhance nanoparticle-endothelial interactions under flow. J. Cell. Biotechnol. 1(2), 191–208 (2016).
    • 74. Xia Y, Shi C-Y, Xiong W, Hou X-L, Fang J-G, Wang W-Q. Shear stress-sensitive carriers for localized drug delivery. Curr. Pharm. Des. 22(38), 5855–5867 (2016).
    • 75. Kelley WJ, Safari H, Lopezcazares G, Eniolaadefeso O. Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(6), 909–926 (2016).
    • 76. Epshtein M, Korin N. Shear targeted drug delivery to stenotic blood vessels. J. Biomech. 50, 217–221 (2017).
    • 77. Calin M, Manduteanu I. Emerging nanocarriers-based approaches to diagnose and reduce vascular inflammation in atherosclerosis. Curr. Med. Chem. 24(6), 550–567 (2017).
    • 78. Bejarano J, Navarro-Marquez M, Morales-Zavala F et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics 8(17), 4710 (2018).
    • 79. Gupta P, Garcia E, Sarkar A et al. Nanoparticle based treatment for cardiovascular diseases. Cardiovasc. Hematol. Disord. Drug Targets 19(1), 33–44 (2019).
    • 80. Nakhlband A, Eskandani M, Omidi Y et al. Combating atherosclerosis with targeted nanomedicines: recent advances and future prospective. Bioimpacts 8(1), 59–75 (2018).
    • 81. Maruf A, Wang Y, Yin T et al. Atherosclerosis treatment with stimuli-responsive nanoagents: recent advances and future perspectives. Adv. Healthc. Mater. 8(11), 1900036 (2019). •• Recent comprehensive stimuli-responsive review in atherosclerosis.
    • 82. Wang J, Kaplan JA, Colson YL, Grinstaff MW. Mechanoresponsive materials for drug delivery: harnessing forces for controlled release. Adv. Drug. Deliv. Rev. 108, 68–82 (2017).
    • 83. Zhang Y, Yu J, Bomba HN, Zhu Y, Gu Z. Mechanical force-triggered drug delivery. Chem. Rev. 116(19), 12536–12563 (2016).
    • 84. Korin N. Mechanoresponsive nanotherapeutic for localized drug delivery to flow obstructed blood vessels. Ther. Deliv. 6(8), 895–897 (2015).
    • 85. Santos LJ, Reis RL, Gomes ME. Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33(8), 471–479 (2015).
    • 86. Golovin YI, Gribanovsky SL, Golovin DY et al. Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J. Control. Release 219, 43–60 (2015).
    • 87. Weder C. Mechanoresponsive materials. J. Mater. Chem. 21(23), 8235–8236 (2011).
    • 88. Korin N, Kanapathipillai M, Matthews BD et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095), 738–742 (2012).
    • 89. Farokhzad OC, Khademhosseini A, Jon S et al. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal. Chem. 77(17), 5453–5459 (2005).
    • 90. Korin N, Kanapathipillai M, Ingber DE. Shear-responsive platelet mimetics for targeted drug delivery. Isr. J. Chem. 53(9–10), 610–615 (2013). • First development of shear-responsive nanoplatforms (NPs).
    • 91. Zha L, Banik B, Alexis F. Stimulus responsive nanogels for drug delivery. Soft Matt. 7(13), 5908–5916 (2011).
    • 92. Cecchi E, Giglioli C, Valente S et al. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214(2), 249–256 (2011).
    • 93. Reneman RS, Hoeks APG. Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med. Biol. Eng. Comput. 46(5), 499–507 (2008).
    • 94. Dai Q, Nelson A. Magnetically-responsive self assembled composites. Chem. Soc. Rev. 39(11), 4057–4066 (2010).
    • 95. Kanwar RK, Chaudhary R, Tsuzuki T, Kanwar JR. Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come? Nanomedicine 7(6), 899–916 (2012).
    • 96. Usman A, Sadat U, Patterson AJ et al. Use of ultrasmall superparamagnetic iron oxide particles for imaging carotid atherosclerosis. Nanomedicine 10(19), 3077–3087 (2015).
    • 97. Qin H, Zhou T, Yang S, Chen Q, Xing D. Gadolinium(III)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine 8(10), 1611–1624 (2013).
    • 98. Zrinyi M, Barsi L, Buki A. Deformation of ferrogels induced by nonuniform magnetic fields. J. Chem. Phys. 104(21), 8750–8756 (1996).
    • 99. Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin. Drug Deliv. 6(1), 53–70 (2009).
    • 100. Sensenig R, Sapir Y, Macdonald C, Cohen S, Polyak B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine 7(9), 1425–1442 (2012).
    • 101. Zhao Y-Z, Du L-N, Lu C-T, Jin Y-G, Ge S-P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomedicine 8, 1621–1633 (2013).
    • 102. Wang K, Guo B, Zhang F et al. Design of ligands-conjuncted lipid nanobubbles as ultrasound contrast agents targeted to atherosclerotic plaques. J. Nanosci. Nanotechnol. 16(7), 7611–7616 (2016).
    • 103. Lammertink BHA, Bos C, Deckers R, Storm G, Moonen CTW, Escoffre J. Sonochemotherapy: from bench to bedside. Front. Pharmacol. 6, 138 (2015).
    • 104. Carovac A, Smajlovic F, Junuzovic D. Application of ultrasound in medicine. Acta Inform. Med. 19(3), 168–171 (2011).
    • 105. Wang H-K, Chou Y-H, Chiou H-J, Chiou S-Y, Chang C-Y. B-flow ultrasonography of peripheral vascular diseases. J. Med. Ultrasound 13(4), 186–195 (2005).
    • 106. Wachsberg RH. B-flow imaging of the hepatic vasculature: correlation with color doppler sonography. AJR Am. J. Roentgenol. 188(6), W522–W533 (2007).
    • 107. Cobbold RS. Pulsed methods for flow velocity estimation and imaging. In: Foundations of biomedical ultrasound. Oxford University Press, NY, USA, 652–673 (2007).
    • 108. Wan G, Liu Y, Chen B, Liu Y, Wang Y, Zhang N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol. Med. 13(3), 325–338 (2016).
    • 109. Olson ES, Jiang T, Aguilera TA et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl Acad. Sci. USA 107(9), 4311–4316 (2010).
    • 110. Rink JS, Sun W, Misener S et al. Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic nanotherapy for vascular diseases. ACS Appl. Mater. Interfaces 10(8), 6904–6916 (2018).
    • 111. Loerakker S, Stassen OMJA, Huurne FMT, Boareto M, Bouten CVC, Sahlgren CM. Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis. Proc. Natl Acad. Sci. USA 115(16), E3682–E3691 (2018).
    • 112. Yan F, Sun Y, Mao Y et al. Ultrasound molecular imaging of atherosclerosis for early diagnosis and therapeutic evaluation through leucocyte-like multiple targeted microbubbles. Theranostics 8(7), 1879–1891 (2018).
    • 113. Hossaini Nasr S, Tonson A, El-Dakdouki MH et al. Effects of nanoprobe morphology on cellular binding and inflammatory responses: hyaluronan-conjugated magnetic nanoworms for magnetic resonance imaging of atherosclerotic plaques. ACS Appl. Mater. Interfaces 10(14), 11495–11507 (2018).
    • 114. Jacobinvalat M, Larochetraineau J, Lariviere M et al. Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging. Nanomedicine 11(4), 927–937 (2015).
    • 115. Kamat MN, Elboubbou K, Zhu DC et al. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Bioconjug. Chem. 21(11), 2128–2135 (2010).
    • 116. Kim M, Sahu A, Kim GB et al. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. J. Control. Release 269, 337–346 (2018).
    • 117. Khodabandehlou K, Masehilano JJ, Poon C, Wang JL, Chung EJ. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp. Biol. Med. 242(8), 799–812 (2017).
    • 118. Nahrendorf M, Zhang H, Hembrador S et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117(3), 379–387 (2008).
    • 119. Ding J, Wang Y, Ma M et al. CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques. Biomaterials 34(1), 209–216 (2013).
    • 120. Eldakdouki MH, Elboubbou K, Kamat MN et al. CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging. Pharm. Res. 31(6), 1426–1437 (2014).
    • 121. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5(3), 161–171 (2005).
    • 122. Patil VRS, Campbell CJ, Yun YH, Slack SM, Goetz DJ. Particle diameter influences adhesion under flow. Biophys. J. 80(4), 1733–1743 (2001).
    • 123. Stolnik S, Illum L, Davis S. Long circulating microparticulate drug carriers. Adv. Drug. Deliv. Rev. 64, 290–301 (2012).
    • 124. Ilium L, Davis S, Wilson C, Thomas N, Frier M, Hardy J. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int. J. Pharm. 12(2–3), 135–146 (1982).
    • 125. Panyam J, Dali MM, Sahoo SK et al. Polymer degradation and in vitro release of a model protein from poly (D,L-lactide-co-glycolide) nano-and microparticles. J. Control. Release 92(1–2), 173–187 (2003).
    • 126. Dunne M, Corrigan O, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21(16), 1659–1668 (2000).
    • 127. Holme MN, Fedotenko I, Abegg D et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 7(8), 536–543 (2012). • The application of shear-responsive NPs in atherosclerosis management.
    • 128. Molloy CP, Yao Y, Kammoun H et al. Shear-sensitive nanocapsules drug release for site-specific inhibition of occlusive thrombus formation. J. Thromb. Haemost. 15(5), 972–982 (2017).
    • 129. Griffin MT, Zhu Y, Liu Z, Aidun CK, Ku DN. Inhibition of high shear arterial thrombosis by charged nanoparticles. Biomicrofluidics 12(4), 042210 (2018).
    • 130. Chen C, Li S, Liu K, Ma G, Yan X. Co-assembly of heparin and polypeptide hybrid nanoparticles for biomimetic delivery and anti-thrombus therapy. Small 12(34), 4719–4725 (2016).
    • 131. Jin R, Lin B, Li D, Ai H. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr. Opin. Pharmacol. 18, 18–27 (2014).
    • 132. Merkel TJ, Herlihy KP, Nunes JK, Orgel R, Rolland JP, Desimone JM. Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26(16), 13086–13096 (2010).
    • 133. Tsuzuki T, Mccormick PG. Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 39, 5143–5146 (2004).
    • 134. Liong M, Lu J, Kovochich M et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889–896 (2008).
    • 135. Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 11(20), 3805–3821 (2009).
    • 136. Hudson R, Feng Y, Varma RS, Moores A. Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem. 16(10), 4493–4505 (2014).
    • 137. Laurent S, Forge D, Port M et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008).
    • 138. Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv. Healthc. Mater. 6(23), 1700306 (2017).
    • 139. Stride EP, Coussios CC. Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy. Proc. Inst. Mech. Eng. H. 224(2), 171–191 (2010).
    • 140. Bailey MR, Khokhlova VA, Sapozhnikov OA, Kargl SG, Crum LA. Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys. 49(4), 369–388 (2003).
    • 141. Prajapati JV, Agrawal YK. Synthesis, characterization and application of microbubbles: a review. Int. J. Pharm. Sci. Res. 3(6), 1532–1543 (2012).
    • 142. Zhou M, Cavalieri F, Caruso F, Ashokkumar M. Confinement of acoustic cavitation for the synthesis of protein-shelled nanobubbles for diagnostics and nucleic acid delivery. ACS Macro Lett. 1(7), 853–856 (2012). •• One of the fabrication method of microbubbles, providing a promising way to develop microbubbles.
    • 143. Wang Y, Zhang K, Qin X et al. Biomimetic nanotherapies: red blood cell based core-shell structured nanocomplexes for atherosclerosis management. Adv. Sci. 6(12), 1900172 (2019). •• Recent development of nanocomplex for atherosclerosis management.
    • 144. Song Y, Huang Z, Liu X et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice. Nanomedicine 15(1), 13–24 (2019).
    • 145. Kunkun W, Binbin G, Feng Z et al. Design of ligands-conjuncted lipid nanobubbles as ultrasound contrast agents targeted to atherosclerotic plaques. J. Nanosci. Nanotechnol. 16(7), 7611–7616 (2016).
    • 146. Yuan H, Hu H, Sun J et al. Ultrasound microbubble delivery targeting intraplaque neovascularization inhibits atherosclerotic plaque in an ApoE-deficient mouse model. In Vivo 32(5), 1025–1032 (2018).
    • 147. Ji R, Li X, Zhou C et al. Identifying macrophage enrichment in atherosclerotic plaques by targeting dual-modal US imaging/MRI based on biodegradable Fe-doped hollow silica nanospheres conjugated with anti-CD68 antibody. Nanoscale 10(43), 20246–20255 (2018).
    • 148. Hamzah J, Kotamraju VR, Seo JW et al. Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proc. Natl Acad. Sci. USA 108(17), 7154–7159 (2011).
    • 149. Cormode DP, Brileysaebo KC, Mulder WJM et al. An ApoA-I mimetic peptide high-density-lipoprotein-based MRI contrast agent for atherosclerotic plaque composition detection. Small 4(9), 1437–1444 (2008).
    • 150. Zhang L, Tian XY, Chan CKW et al. Promoting the delivery of nanoparticles to atherosclerotic plaques by DNA coating. ACS Appl. Mater. Interfaces 11(15), 13888–13904 (2018). • The application of magnetic-responsive NPs in atherosclerosis management.
    • 151. Matuszak J, Lutz B, Sekita A et al. Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles. Int. J. Nanomedicine 13, 8443–8460 (2018).
    • 152. Cicha I, Matuszak J, Lutz B, Alexiou C, Lyer S. P3781 Magnetic drug targeting to vascular injury regions and atherosclerotic lesions: in vivo pilot study. Eur. Heart J. 39(Suppl. 1), 3781 (2018).
    • 153. Zhang X, Zhao K, Wang J et al. Design of simvastatin-loaded polymeric microbubbles as targeted ultrasound contrast agents for vascular imaging and drug delivery in the identification of atherosclerotic plaque. New J. Chem. 40(2), 1256–1262 (2016).
    • 154. Wong WT, Ma S, Tian XY, Gonzalez AB, Ebong EE, Shen H. Targeted delivery of shear stress-inducible micrornas by nanoparticles to prevent vulnerable atherosclerotic lesions. Methodist Debakey Cardiovasc. J. 12(3), 152–156 (2016).
    • 155. Petrov L, Kaikkonen MU, Heikura T et al. Ultrasound and micro-bubbles coated with anti-VCAM-1 antibody for selective gene delivery to unstable atherosclerotic plaques in mouse aorta post angioplasty. Cardiovasc. Gene Ther. 16, s55–s56 (2008).
    • 156. Noukeu LC, Wolf J, Yuan B, Banerjee S, Nguyen KT. Nanoparticles for detection and treatment of peripheral arterial disease. Small 14(32), 1800644 (2018).
    • 157. Dong Y, Chen H, Chen C et al. Polymer-lipid hybrid theranostic nanoparticles co-delivering ultrasmall superparamagnetic iron oxide and paclitaxel for targeted magnetic resonance imaging and therapy in atherosclerotic plaque. J. Biomed. Nanotechnol. 12(6), 1245–1257 (2016).
    • 158. Pont I, Calatayudpascual A, Lopezcastellano A et al. Anti-angiogenic drug loaded liposomes: nanotherapy for early atherosclerotic lesions in mice. PLoS ONE 13(1), e0190540 (2018).
    • 159. Tachibana K, Feril LB, Ikeda-Dantsuji Y. Sonodynamic therapy. Ultrasonics 48(4), 253–259 (2008).
    • 160. Geng C, Zhang Y, Hidru TH et al. Sonodynamic therapy: a potential treatment for atherosclerosis. Life Sci. 207, 304–313 (2018).
    • 161. Wang Y, Wang W, Xu H et al. Non-lethal sonodynamic therapy inhibits atherosclerotic plaque progression in ApoE-/- mice and attenuates Ox-LDL-mediated macrophage impairment by inducing heme oxygenase-1. Cell. Physiol. Biochem. 41(6), 2432–2446 (2017). • The application of ultrasound-responsive NPs in atherosclerosis management.