We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Imaging in the repair of peripheral nerve injury

    Igor D Luzhansky

    Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA

    The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA

    Authors contributed equally

    Search for more papers by this author

    ,
    Leland C Sudlow

    Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA

    Authors contributed equally

    Search for more papers by this author

    ,
    David M Brogan

    Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA

    Authors contributed equally

    Search for more papers by this author

    ,
    Matthew D Wood

    Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA

    Authors contributed equally

    Search for more papers by this author

    &
    Mikhail Y Berezin

    *Author for correspodence:

    E-mail Address: berezinm@wustl.edu

    Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA

    The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA

    Authors contributed equally

    Search for more papers by this author

    Published Online:https://doi.org/10.2217/nnm-2019-0115

    Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ootes D , Lambers KT , Ring DC . The epidemiology of upper extremity injuries presenting to the emergency department in the United States. Hand 7(1), 18–22 (2012).
    • 2. Sunderland S . A classification of peripheral nerve injuries producing loss of function. Brain 74(4), 491–516 (1951).
    • 3. Seddon H . Three types of nerve injury. Brain 66(4), 237–288 (1943).
    • 4. Houschyar KS , Momeni A , Pyles MN et al. The role of current techniques and concepts in peripheral nerve repair. Plast. Surg. Int. 2016, 4175293 (2016).
    • 5. Johnson PJ , Wood MD , Moore AM , MacKinnon SE . Tissue engineered constructs for peripheral nerve surgery. Eur. Surg. 45(3), 122–135 (2013).
    • 6. Daly W , Yao L , Zeugolis D , Windebank A , Pandit A . A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J. R. Soc. Interface 9(67), 202–221 (2012).
    • 7. Wood MD , MacKinnon SE . Pathways regulating modality-specific axonal regeneration in peripheral nerve. Exp. Neurol. 265, 171–175 (2015). •• Review of potential pharmacological therapies and novel opportunities in nerve repair.
    • 8. Seitz RJ , Reiners K , Himmelmann F , Heininger K , Hartung H-P , Toyka KV . The blood–nerve barrier in Wallerian degeneration: a sequential long-term study. Muscle Nerve 12, 627–635 (1989).
    • 9. Fu SY , Gordon T . The cellular and molecular basis of peripheral nerve regeneration. Mol. Neurobiol. 14(1–2), 67–116 (1997).
    • 10. Martini R , Fischer S , Lopez-Vales R , David S . Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 56(14), 1566–1577 (2008).
    • 11. Ribeiro-Resende VT , Koenig B , Nichterwitz S , Oberhoffner S , Schlosshauer B . Strategies for inducing the formation of bands of Bungner in peripheral nerve regeneration. Biomaterials 30(29), 5251–5259 (2009).
    • 12. Wood MD , Kemp SW , Weber C , Borschel GH , Gordon T . Outcome measures of peripheral nerve regeneration. Ann. Anat. 193(4), 321–333 (2011).
    • 13. Jessen KR , Arthur-Farraj P . Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 67(3), 421–437 (2019).
    • 14. Lackington WA , Ryan AJ , O’Brien FJ . Advances in nerve guidance conduit-based therapeutics for peripheral nerve repair. ACS Biomater. Sci. Eng. 3(7), 1221–1235 (2017). • Review of nerve guidance conduit engineering including topographic, biophysical and biochemical properties.
    • 15. Thawait SK , Wang K , Subhawong TK et al. Peripheral nerve surgery: the role of high-resolution MR neurography. Am. J. Neuroradiol. 33(2), 203–210 (2012).
    • 16. Toia F , Moschella F , Cillino M , Gagliardo A , Maggì F , Mariolo A . Clinical neurophysiology and imaging of nerve injuries: preoperative diagnostic work-up and postoperative monitoring. Plast. Aesthetic Res. 2(4), 149 (2015).
    • 17. Tseng TC , Yen CT , Hsu SH . Visualization of peripheral nerve regeneration. Neural Regen. Res. 9(10), 997–999 (2014).
    • 18. Mitchell CH , Fayad LM , Ahlawat S . Magnetic resonance imaging of the digital nerves of the hand: anatomy and spectrum of pathology. Curr. Problems Diagn. Radiol. 47(1), 42–50 (2018).
    • 19. Grinsell D , Keating CP . Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed. Res. Int. 2014, 698256 (2014). • Overview of peripheral nerve injury treatment.
    • 20. Brooks DN , Weber RV , Chao JD et al. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 32(1), 1–14 (2012).
    • 21. Ao Q . Progress of nerve bridges in the treatment of peripheral nerve disruptions. J. Neurorestoratol. 4, 107–113 (2016).
    • 22. Lundborg G , Dahlin LB , Danielsen NP , Hansson HA , Larsson K . Reorganization and orientation of regenerating nerve fibres, perineurium, and epineurium in preformed mesothelial tubes – an experimental study on the sciatic nerve of rats. J. Neurosci. Res. 6, 265–281 (1981).
    • 23. Poppler LH , Ee X , Schellhardt L et al. Axonal growth arrests after an increased accumulation of Schwann cells expressing senescence markers and stromal cells in acellular nerve allografts. Tissue Eng. Part A 22(13–14), 949–961 (2016).
    • 24. Wangensteen KJ , Kalliainen LK . Collagen tube conduits in peripheral nerve repair: a retrospective analysis. Hand 5(3), 273–277 (2010).
    • 25. Alovskaya A , Alekseeva T , Phillips JB , King V , Brown R . Fibronectin, collagen, fibrin – components of extracellular matrix for nerve generation. Topics Tissue Engineering 3, 1–26 (2017).
    • 26. Hopkins TM , Little KJ , Vennemeyer JJ et al. Short and long gap peripheral nerve repair with magnesium metal filaments. J. Biomed. Mater. Res. Part A 105(11), 3148–3158 (2017).
    • 27. Mottaghitalab F , Farokhi M , Zaminy A et al. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS ONE 8(9), e74417 (2013).
    • 28. Chang CJ , Hsu SH . The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials 27(7), 1035–1042 (2006).
    • 29. Tao J , Hu Y , Wang S et al. A 3D-engineered porous conduit for peripheral nerve repair. Sci. Rep. 7, 46038 (2017).
    • 30. Du J , Liu J , Yao S et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 55, 296–309 (2017).
    • 31. Zhao YH , Niu CM , Shi JQ , Wang YY , Yang YM , Wang HB . Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen. Res. 13(8), 1455–1464 (2018).
    • 32. Marquardt LM , Ee X , Iyer N et al. Finely tuned temporal and spatial delivery of gdnf promotes enhanced nerve regeneration in a long nerve defect model. Tissue Eng. Part A 21(23–24), 2852–2864 (2015).
    • 33. Mokarram N , Dymanus K , Srinivasan A et al. Immunoengineering nerve repair. PNAS 114(26), E5077–E5084 (2017).
    • 34. Yao L , De Ruiter GC , Wang H et al. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials 31(22), 5789–5797 (2010).
    • 35. Ryan AJ , Lackington WA , Hibbitts AJ et al. A physicochemically optimized and neuroconductive biphasic nerve guidance conduit for peripheral nerve repair. Adv. Healthcare Mater. 6(24), 1700954 (2017).
    • 36. Maiti B , Díaz Díaz D . 3D printed polymeric hydrogels for nerve regeneration. Polymers 10(9), 1041 (2018).
    • 37. Pateman CJ , Harding AJ , Glen A et al. Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 49, 77–89 (2015).
    • 38. Chang YC , Chen MH , Liao SY et al. Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system. ACS Appl. Mater. Interfaces 9(43), 37623–37636 (2017). • Multimodal nerve guidance conduit including neurotrophic concentration gradients, guidance microchannels and tuned biophysical properties.
    • 39. Di Summa PG , Kingham PJ , Raffoul W , Wiberg M , Terenghi G , Kalbermatten DF . Adipose-derived stem cells enhance peripheral nerve regeneration. J. Plast. Reconstr. Aesthetic Surg. 63(9), 1544–1552 (2010).
    • 40. Ee X , Yan Y , Hunter DA et al. Transgenic SCs expressing GDNF-IRES-DsRed impair nerve regeneration within acellular nerve allografts. Biotechnol. Bioeng. 114(9), 2121–2130 (2017).
    • 41. Ning L , Sun H , Lelong T et al. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication 10(3), 035014 (2018).
    • 42. Zhang Q , Nguyen PD , Shi S , Burrell JC , Cullen DK , Le AD . 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci. Rep. 8(1), 6634 (2018).
    • 43. Gribble KD , Walker LJ , Saint-Amant L , Kuwada JY , Granato M . The synaptic receptor Lrp4 promotes peripheral nerve regeneration. Nat. Commun. 9(1), 2389 (2018).
    • 44. Mukhatyar V , Pai B , Clements I et al. Molecular sequelae of topographically guided peripheral nerve repair. Ann. Biomed. Eng. 42(7), 1436–1455 (2014).
    • 45. Panthi S , Gautam K . Roles of nitric oxide and ethyl pyruvate after peripheral nerve injury. Inflamm. Regen. 37, 20 (2017).
    • 46. Swanger RS , Maldjian C , Buckley K . MRI appearance of nerve regeneration in a surgically repaired ulnar nerve. Eur. J. Trauma Emerg. Surg. 36(1), 73–75 (2010).
    • 47. Berezin MY . Nanotechnology for Biomedical Imaging and Diagnostics: From Nanoparticle Design to Clinical Applications. John Wiley & Sons, NJ, USA (2014). • Extensive review of innovative in vivo imaging techniques.
    • 48. Rangavajla G , Mokarram N , Masoodzadehgan N , Pai SB , Bellamkonda RV . Noninvasive imaging of peripheral nerves. Cells Tissues Organs 200(1), 69–77 (2014).
    • 49. D’Souza MM , Jaimini A , Kumar Dhali T et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a case of malignant peripheral nerve sheath tumor: an unusual presentation. Indian J. Nucl. Med. 28(3), 168–170 (2013).
    • 50. Pilavaki M , Chourmouzi D , Kiziridou A , Skordalaki A , Zarampoukas T , Drevelengas A . Imaging of peripheral nerve sheath tumors with pathologic correlation: pictorial review. Eur. J. Radiol. 52(3), 229–239 (2004).
    • 51. Tseng TC , Hsu SH . Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 35(9), 2630–2641 (2014).
    • 52. Heimel P , Swiadek NV , Slezak P et al. Iodine-enhanced micro-CT imaging of soft tissue on the example of peripheral nerve regeneration. Contrast Media Mol. Imaging 2019, 7483745 (2019).
    • 53. Zeidenberg J , Burks SS , Jose J , Subhawong TK , Levi AD . The utility of ultrasound in the assessment of traumatic peripheral nerve lesions: report of 4 cases. Neurosurg. Focus 39(3), E3 (2015).
    • 54. Matthews TP , Zhang C , Yao DK , Maslov K , Wang LV . Label-free photoacoustic microscopy of peripheral nerves. J. Biomed. Optics 19(1), 16004 (2014).
    • 55. Behera D , Jacobs KE , Behera S , Rosenberg J , Biswal S . (18)F-FDG PET/MRI can be used to identify injured peripheral nerves in a model of neuropathic pain. J. Nuclear Med. 52(8), 1308–1312 (2011).
    • 56. Henry FP , Wang Y , Rodriguez CL et al. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography . J. Biomed. Optics 20(4), 046002 (2015).
    • 57. Gibbs-Strauss SL , Nasr K , Fish KM et al. Nerve-highlighting fluorescent contrast agents for image-guided surgery. Mol. Imaging 10(2), 91–101 (2011).
    • 58. Ohana M , Moser T , Moussaoui A et al. Current and future imaging of the peripheral nervous system. Diagn. Interv. Imaging 95(1), 17–26 (2014).
    • 59. Andersson G , Oradd G , Sultan F , Novikov LN . In vivo diffusion tensor imaging, diffusion kurtosis imaging, and tractography of a sciatic nerve injury model in rat at 9.4T . Sci. Rep. 8(1), 12911 (2018).
    • 60. Martin Noguerol T , Barousse R , Socolovsky M , Luna A . Quantitative magnetic resonance (MR) neurography for evaluation of peripheral nerves and plexus injuries. Quant. Imaging Med. Surg. 7(4), 398–421 (2017).
    • 61. Felisaz PF , Chang EY , Carne I et al. In vivo MR microneurography of the tibial and common peroneal nerves . Radiol. Res. Practice 2014, 780964 (2014).
    • 62. Chan S-H , Hsu S-H . Peripheral nerve tissue engineering and regeneration observed using MRI. In: Magnetic Resonance Imaging in Tissue Engineering. Kotecha M Magin RL Mao JJ (Eds). John Wiley & Sons, Inc., NJ, USA, 367–381 (2017).
    • 63. Bendszus M , Wessig C , Schutz A et al. Assessment of nerve degeneration by gadofluorine M-enhanced magnetic resonance imaging. Ann. Neurol. 57(3), 388–395 (2005).
    • 64. Simon NG , Talboit J , Chin CT , Kliot M . Peripheral nerve imaging (chapter 40). Neuroimaging: Part 2 (40), 811–826 (2016).
    • 65. Jacobs KE , Behera D , Rosenberg J et al. Oral manganese as an MRI contrast agent for the detection of nociceptive activity. NMR Biomed. 25(4), 563–569 (2012).
    • 66. Möller I , Miguel M , Bong DA , Zaottini F , Martinoli C . The peripheral nerves: update on ultrasound and magnetic resonance imaging. Clin. Exp. Rheumatol. 36(Suppl. 114), S145–S158 (2018).
    • 67. Alaqeel A , Alshomer F . High resolution ultrasound in the evaluation and management of traumatic peripheral nerve injuries: review of the literature. Oman Med. J. 29(5), 314–319 (2014).
    • 68. Fantoni C , Erra C , Fernandez Marquez EM et al. Ultrasound diagnosis of postoperative complications of nerve repair. World Neurosurg. 115, 320–323 (2018).
    • 69. Situ-Lacasse EH , Amini R , Bain V et al. Performance of ultrasound-guided peripheral nerve blocks by medical students after one-day training session. Cureus 11(1), e3911 (2019).
    • 70. Palmeri ML , Dahl JJ , MacLeod DB , Grant SA , Nightingale KR . On the feasibility of imaging peripheral nerves using acoustic radiation force impulse imaging. Ultrason. Imaging 31(3), 172–182 (2009).
    • 71. Yagihashi S . Clinical application of photoacoustic imaging to the evaluation of diabetic polyneuropathy. Diabetes 67(Suppl. 1), 582-P (2018).
    • 72. Li R , Phillips E , Wang P , Goergen CJ , Cheng JX . Label-free in vivo imaging of peripheral nerve by multispectral photoacoustic tomography. J. Biophoton. 9(1–2), 124–128 (2016).
    • 73. Walsh EM , Cole D , Tipirneni KE et al. Fluorescence imaging of nerves during surgery. Ann. Surg. 270(1), 69–76 (2019). • Overview of fluorescent nerve imaging agents.
    • 74. Weissleder R , Pittet MJ . Imaging in the era of molecular oncology. Nature 452(7187), 580–589 (2008).
    • 75. Zhang H , Salo DC , Kim DM , Komarov S , Tai Y-C , Berezin MY . Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries. J. Biomed. Optics 21(12), 126006 (2016).
    • 76. Thimsen E , Sadtler B , Berezin MY . Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities. Nanophotonics 6(5), 1043–1054 (2017).
    • 77. Zhang SJ , Wu JC . Comparison of imaging techniques for tracking cardiac stem cell therapy. J. Nuclear Med. 48(12), 1916–1919 (2007). • Comprehensive review on fluorescence lifetime investigation techniques
    • 78. Berezin MY , Achilefu S . Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110(5), 2641–2684 (2010).
    • 79. Dysli C , Wolf S , Berezin MY , Sauer L , Hammer M , Zinkernagel MS . Fluorescence lifetime imaging ophthalmoscopy. Prog. Retin. Eye Res. 60, 120–143 (2017).
    • 80. Cotero VE , Kimm SY , Siclovan TM et al. Improved intraoperative visualization of nerves through a myelin-binding fluorophore and dual-mode laparoscopic imaging. PLoS ONE 10(6), e0130276 (2015).
    • 81. Samarasena JB , Ahluwalia A , Shinoura S et al. In vivo imaging of porcine gastric enteric nervous system using confocal laser endomicroscopy & molecular neuronal probe . J. Gastroenterol. Hepatol. 31(4), 802–807 (2016).
    • 82. Dun XP , Parkinson DB . Visualizing peripheral nerve regeneration by whole mount staining. PLoS ONE 10(3), e0119168 (2015).
    • 83. Jung Y , Ng JH , Keating CP et al. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLoS ONE 9(4), e94054 (2014).
    • 84. Massaad CA , Zhang G , Pillai L , Azhdarinia A , Liu W , Sheikh KA . Fluorescently-tagged anti-ganglioside antibody selectively identifies peripheral nerve in living animals. Sci. Rep. 5, 15766 (2015).
    • 85. Hayashi A , Moradzadeh A , Hunter DA et al. Retrograde labeling in peripheral nerve research: it is not all black and white. J. Reconstr. Microsurg. 23(7), 381–389 (2007).
    • 86. Park MH , Hyun H , Ashitate Y et al. Prototype nerve-specific near-infrared fluorophores. Theranostics 4(8), 823–833 (2014).
    • 87. Tan Y , Liu R , Zhang H et al. Design and synthesis of near-infrared fluorescent probes for imaging of biological nitroxyl. Sci. Rep. 5, 16979 (2015).
    • 88. Gustafson TP , Yan Y , Newton P et al. A NIR dye for development of peripheral nerve targeted probes. MedChemComm 3(6), 685–690 (2012).
    • 89. Gibbs KL , Kalmar B , Sleigh JN , Greensmith L , Schiavo G . In vivo imaging of axonal transport in murine motor and sensory neurons . J. Neurosci. Methods 257, 26–33 (2016).
    • 90. Zhou H , Yan Y , Ee X et al. Imaging of radicals following injury or acute stress in peripheral nerves with activatable fluorescent probes. Free Radic. Biol. Med. 101, 85–92 (2016).
    • 91. Yan Y , Sun HH , MacKinnon SE , Johnson PJ . Evaluation of peripheral nerve regeneration via in vivo serial transcutaneous imaging using transgenic Thy1-YFP mice. Exp. Neurol. 232(1), 7–14 (2011).
    • 92. Bremer J , Skinner J , Granato M . A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish. PLoS ONE 12(6), e0178854 (2017).
    • 93. Placheta E , Wood MD , Lafontaine C , Frey M , Gordon T , Borschel GH . Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats. JAMA Facial Plast. Surg. 17(1), 8–15 (2015).
    • 94. Fukuchi M , Izumi H , Mori H et al. Visualizing changes in brain-derived neurotrophic factor (BDNF) expression using bioluminescence imaging in living mice. Sci. Rep. 7(1), 4949 (2017).
    • 95. Schain AJ , Hill RA , Grutzendler J . Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nat. Med. 20(4), 443–449 (2014).
    • 96. Nam AS , Easow JM , Chico-Calero I et al. Wide-field functional microscopy of peripheral nerve injury and regeneration. Sci. Rep. 8(1), 14004 (2018).
    • 97. Carolus AE , Lenz M , Hofmann M , Welp H , Schmieder K , Brenke C . High-resolution in vivo imaging of peripheral nerves using optical coherence tomography: a feasibility study. J. Neurosurg. doi:10.3171/2019.2.JNS183542 (2019) (Epub ahead of print).
    • 98. Janjic JM , Gorantla VS . Peripheral nerve nanoimaging: monitoring treatment and regeneration. AAPS J. 19(5), 1304–1316 (2017). • Review of neuronal molecular imaging using nanoscopic constructs.
    • 99. Vithanarachchi SM , Foley CD , Trimpin S , Ewing JR , Ali MM , Allen MJ . Myelin-targeted, texaphyrin-based multimodal imaging agent for magnetic resonance and optical imaging. Contrast Media Mol. Imaging 11(6), 492–505 (2016).
    • 100. Janjic JM , Gorantla VS . Novel nanoimaging strategies for noninvasive graft monitoring in vascularized composite allotransplantation. Curr. Transplant. Rep. 5(4), 369–372 (2018).
    • 101. Gorantla VS , Janjic JM . Clinically translatable nanotheranostic platforms for peripheral nerve regeneration: design with outcome in mind. Proc. SPIE 10508 (2018).
    • 102. Hallam KA , Donnelly EM , Karpiouk AB , Hartman RK , Emelianov SY . Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening. Biomed. Optics Express 9(9), 4527–4538 (2018).
    • 103. Akers WJ , Kim C , Berezin M et al. Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles. ACS Nano 5(1), 173–182 (2011).
    • 104. Lee SH , Seo HG , Oh BM , Choi H , Cheon GJ , Lee SU . (18)F-FDG positron emission tomography as a novel diagnostic tool for peripheral nerve injury. J. Neurosci. Methods 317, 11–19 (2019).
    • 105. Lu FM , Yuan Z . PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5(3), 433–447 (2015).
    • 106. Lasko L , Huang X , Voorbach MJ et al. Multimodal assessment of nervous and immune system responses following sciatic nerve injury. Pain 154(12), 2782–2793 (2013).
    • 107. Hopkins TM , Heilman AM , Liggett JA et al. Combining micro-computed tomography with histology to analyze biomedical implants for peripheral nerve repair. J. Neurosci. Methods 255, 122–130 (2015).
    • 108. Bartels M , Krenkel M , Cloetens P , Mobius W , Salditt T . Myelinated mouse nerves studied by x-ray phase contrast zoom tomography. J. Struct. Biol. 192(3), 561–568 (2015).
    • 109. Wang HK , Wang YX , Xue CB et al. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning. Neural Regen. Res. 11(1), 168–173 (2016).
    • 110. Huff TB , Cheng J-X . In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue. J. Microsc. 225(2), 175–182 (2007).
    • 111. Morisaki S , Ota C , Matsuda K et al. Application of Raman spectroscopy for visualizing biochemical changes during peripheral nerve injury in vitro and in vivo . J. Biomed. Optics 18(11), 116011 (2013).
    • 112. Kumamoto Y , Harada Y , Tanaka H , Takamatsu T . Rapid and accurate peripheral nerve imaging by multipoint Raman spectroscopy. Sci. Rep. 7(1), 845 (2017).
    • 113. Tsoutsi D , Sanles-Sobrido M , Cabot A , Gil PR . Common aspects influencing the translocation of SERS to biomedicine. Curr. Med. Chem. 25(35), 4638–4652 (2018). • Overview of the use of surface-enhanced Raman scattering nanoparticles for in vivo imaging.
    • 114. Nam SY , Ricles LM , Suggs LJ , Emelianov SY . Imaging strategies for tissue engineering applications. Tissue Eng. Part B Rev. 21(1), 88–102 (2015).
    • 115. Mertens ME , Hermann A , Buhren A et al. Iron oxide-labeled collagen scaffolds for non-invasive MR imaging in tissue engineering. Adv. Funct. Mater. 24(6), 754–762 (2014).
    • 116. Peeters E , Halter D , Broer DJ , Penterman R : US 2011/0243852 (2011).
    • 117. Pan C-P , Shi Y , Amin K , Greenberg CS , Haroon Z , Faris GW . Wound healing monitoring using near infrared fluorescent fibrinogen. Biomed. Optics Express 1(1), 285–294 (2010).
    • 118. Kang B , Austin LA , El-Sayed MA . Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy. Nano Lett. 12(10), 5369–5375 (2012).
    • 119. Sowa Y , Kishida T , Tomita K , Yamamoto K , Numajiri T , Mazda O . Direct conversion of human fibroblasts into Schwann cells that facilitate regeneration of injured peripheral nerve in vivo . Stem Cells Transl. Med. 6(4), 1207–1216 (2017).
    • 120. Sarhane K , Cashman C , Krick K et al. Biomarkers of nerve regeneration in peripheral nerve injuries: an emerging field. In: Biomarkers of Brain Injury and Neurological Disorders. Wang KKW Zhang Z Kobeissy FH (Eds). CRC Press, FL, USA, 650 (2014). • Describes potential nerve regeneration imaging targets.
    • 121. Shim S , Ming GL . Roles of channels and receptors in the growth cone during PNS axonal regeneration. Exp. Neurol. 223(1), 38–44 (2010).
    • 122. Durrenberger PF , Facer P , Casula MA et al. Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study. BMC Neurology 6, 1 (2006).
    • 123. Jessen KR , Mirsky R . The origin and development of glial cells in peripheral nerves. Nat. Rev. 6(9), 671–682 (2005).
    • 124. Carvalho CR , Silva-Correia J , Oliveira JM , Reis RL . Nanotechnology in peripheral nerve repair and reconstruction. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2019.01.006 (2019) (In Press).
    • 125. Ching RC , Kingham PJ . The role of exosomes in peripheral nerve regeneration. Neural Regen. Res. 10(5), 743–747 (2015).
    • 126. Glasgow H , Al E . Laminin targeting of a peripheral nerve-highlighting peptide enables degenerated nerve visualization. PNAS 45(113), 12774–12779 (2016).
    • 127. Hingorani DV , Whitney MA , Friedman B et al. Nerve-targeted probes for fluorescence-guided intraoperative imaging. Theranostics 8(15), 4226–4237 (2018).
    • 128. Frost HK , Kodama A , Ekström P , Dahlin LB . G-CSF prevents caspase 3 activation in Schwann cells after sciatic nerve transection, but does not improve nerve regeneration. Neuroscience 334, 55–63 (2016).
    • 129. Zhang Z , Fan J , Cheney PP et al. Activatable molecular systems using homologous near-infrared fluorescent probes for monitoring enzyme activities in vitro, in cellulo, and in vivo . Mol. Pharm. 6(2), 416–427 (2009).