We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Nanoparticle systems for cancer vaccine

    Ru Wen

    *Author for correspondence:

    E-mail Address: r.wen3344@gmail.com

    Department of Chemistry, University of Georgia, Athens, GA 30602, USA

    ,
    Afoma C Umeano

    Department of Molecular & Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA

    ,
    Yi Kou

    Department of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA

    ,
    Jian Xu

    Laboratory of Cancer Biology & Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA

    &
    Ammad Ahmad Farooqi

    Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 54000, Pakistan

    Published Online:https://doi.org/10.2217/nnm-2018-0147

    As effective tools for public health, vaccines prevent disease by priming the body's adaptive and innate immune responses against an infection. Due to advances in understanding cancers and their relationship with the immune system, there is a growing interest in priming host immune defenses for a targeted and complete antitumor response. Nanoparticle systems have shown to be promising tools for effective antigen delivery as vaccines and/or for potentiating immune response as adjuvants. Here, we highlight relevant physiological processes involved in vaccine delivery, review recent advances in the use of nanoparticle systems for vaccines and discuss pertinent challenges to viably translate nanoparticle-based vaccines and adjuvants for public use.

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1 Swartz TA, Handsher R, Stoeckel P et al. Immunologic memory induced at birth by immunization with inactivated polio vaccine in a reduced schedule. Eur. J. Epidemiol. 5(2), 143–145 (1989).
    • 2 Finn OJ. Cancer vaccines: between the idea and the reality. Nat. Rev. Immunol. 3(8), 630 (2003).
    • 3 Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. 10(4s), S63 (2005).
    • 4 Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat. Immunol. 5(10), 971–974 (2004).
    • 5 Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L. NK cells at the interface between innate and adaptive immunity. Cell Death Differ. 15(2), 226–233 (2008).
    • 6 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 66(1), 7–30 (2016).
    • 7 Labhasetwar V, Song C, Levy RJ. Nanoparticle drug delivery system for restenosis. Adv. Drug Deliv. Rev. 24(1), 63–85 (1997).
    • 8 Wen R, Yue J, Ma Z, Chen W, Jiang X, Yu A. Synthesis of Li4Ti5O12 nanostructural anode materials with high charge–discharge capability. Chin. Sci. Bull. 59(18), 2162–2174 (2014).
    • 9 Peng L, Xiong P, Ma L et al. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 8, 15139 (2017).
    • 10 Yin K, Chu D, Dong X, Wang C, Duan J-A, He J. Femtosecond laser-induced robust periodic nanoripple structured mesh for highly efficient oil–water separation. Nanoscale 9(37), 14229–14235 (2017).
    • 11 Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front. Cell Infect. Microbiol. 3, 13 (2013).
    • 12 Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J. Control. Rel. 256, 26–45 (2017).
    • 13 Fan Y, Moon JJ. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines 3(3), 662–685 (2015).
    • 14 Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787 (2010).
    • 15 Kou Y, Koag M-C, Lee S. N7 methylation alters hydrogen-bonding patterns of guanine in duplex DNA. J. Am. Chem. Soc. 137(44), 14067–14070 (2015).
    • 16 Koag M-C, Kou Y, Ouzon-Shubeita H, Lee S. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Nucleic Acids Res. 42(13), 8755–8766 (2014).
    • 17 Wen R, Umeano AC. Role of targeting nanoparticles for cancer immunotherapy and imaging. Trends Immunother. 1(3), 104–113 (2017).
    • 18 Rosalia RA, Cruz LJ, Van Duikeren S et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40, 88–97 (2015).
    • 19 Neumann S, Young K, Compton B, Anderson R, Painter G, Hook S. Synthetic TRP2 long-peptide and α-galactosylceramide formulated into cationic liposomes elicit CD8+ T cell responses and prevent tumour progression. Vaccine 33(43), 5838–5844 (2015).
    • 20 Hassan HAFM, Smyth L, Wang JTW et al. Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials 104, 310–322 (2016).
    • 21 Lizotte P, Wen A, Sheen M et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotech. 11(3), 295 (2016).
    • 22 Butts C, Socinski MA, Mitchell PL et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for Stage III non-small-cell lung cancer (START): a randomised, double-blind, Phase 3 trial. Lancet Oncol. 15(1), 59–68 (2014).
    • 23 Zupančič E, Curato C, Kim J-S et al. Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer. Nanomed. Nanotech. Biol. Med. 14(3), 835–847 (2018).
    • 24 Singer C, Pfeiler G, Hubalek M et al. Abstract P6-10-01: efficacy and safety of the therapeutic cancer vaccine tecemotide (L-BLP25) in early breast cancer: results from a prospective, randomized, neoadjuvant Phase-II study (ABCSG-34). AACR 77(4), P6-10-01 (2017).
    • 25 Riabov V, Tretyakova I, Alexander RB, Pushko P, Klyushnenkova EN. Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA–DR transgenic mouse model of prostate cancer. Vaccine 33(41), 5386–5395 (2015).
    • 26 Stanley M. Tumour virus vaccines: hepatitis B virus and human papillomavirus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372(1732), 20160268 (2017).
    • 27 Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr. Opin. Biotechnol. 34, 217–224 (2015).
    • 28 Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S. Nanotechnology-inspired tools for mitochondrial dysfunction related diseases. Adv. Drug Deliv. Rev. 99, 52–69 (2016).
    • 29 Xu J, Liu X-J, Li L et al. An engineered TIMP2-based and enediyne-integrated fusion protein for targeting MMP-14 shows potent antitumor efficacy. Oncotarget 6(28), 26322 (2015).
    • 30 Sun Y-W, Xu J, Zhou J, Liu W-J. Targeted drugs for systemic therapy of lung cancer with brain metastases. Oncotarget 9(4), 5459 (2018). •• Excellent review on mitochondria targeting for nanoparticle vaccines.
    • 31 Wen R, Umeano AC, Francis L, Sharma N, Tundup S, Dhar S. Mitochondrion: a promising target for nanoparticle-based vaccine delivery systems. Vaccines 4(2), 18 (2016).
    • 32 Wen R, Umeano AC, Dhar S. Accessing Mitochondrial Targets Using NanoCargos. In: Intracellular Delivery III. Fundamental Biomedical Technologies. Prokop A, Weissig V (Eds). Springer, Cham, 229–254 (2016).
    • 33 Xu J, Du Y, Liu X-J et al. Recombinant EGFR/MMP-2 bi-targeted fusion protein markedly binding to non-small-cell lung carcinoma and exerting potent therapeutic efficacy. Pharm. Res. 126, 66–76 (2017).
    • 34 Fujita Y, Taguchi H. Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem. Cent. J. 5(1), 48 (2011). •• Excellent review on polymer delivery systems.
    • 35 Wen R, Umeano AC, Chen P, Farooqi AA. Polymer-based drug-delivery systems for cancer. Crit. Rev. Ther. Drug Carrier Syst. 35(6), 521–553 (2018).
    • 36 Pathak RK, Wen R, Kolishetti N, Dhar S. A prodrug of two approved drugs, cisplatin and chlorambucil, for chemo war against cancer. Mol. Cancer Ther. 16(4), 625–636 (2017). •• Significant finding on mitochondria-targeted nanoparticles.
    • 37 Wen R, Dhar S. Turn up the cellular power generator with vitamin E analogue formulation. Chem. Sci. 7(8), 5559–5567 (2016).
    • 38 Fu H, Li Z, Liu Z, Wang Z. Research on big data digging of hot topics about recycled water use on micro-blog based on particle swarm optimization. Sustainability 10(7), 2488 (2018).
    • 39 Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3), 1377–1397 (2011).
    • 40 Garinot M, Fiévez V, Pourcelle V et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Rel. 120(3), 195–204 (2007).
    • 41 Zhang X, Zhang H, Yin L et al. A pH-sensitive nanosystem based on carboxymethyl chitosan for tumor-targeted delivery of daunorubicin. J. Biomed. Nanotechnol. 12(8), 1688–1698 (2016).
    • 42 Hu R, Zheng H, Cao J, Davoudi Z, Wang Q. Synthesis and in vitro characterization of carboxymethyl chitosan-CBA-doxorubicin conjugate nanoparticles as pH-sensitive drug delivery systems. J. Biomed. Nanotechnol. 13(9), 1097–1105 (2017).
    • 43 Van Der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci. 14(3), 201–207 (2001).
    • 44 Cao Y, Weiss J, Youngblood J, Moon R, Zavattieri P. Performance-enhanced cementitious materials by cellulose nanocrystal additions. In: Production and Applications of Cellulose Nanomaterials (Eds). Tappi Press, GA, USA, 2 (2013).
    • 45 Cao Y, Verian KP. A VEDA simulation on cement paste: using dynamic atomic force microscopy to characterize cellulose nanocrystal distribution. MRS Commun. 7(3), 672–676 (2017).
    • 46 Cao Y, Zavaterri P, Youngblood J, Moon R, Weiss J. The influence of cellulose nanocrystal additions on the performance of cement paste. Cement Concrete Comp. 56, 73–83 (2015).
    • 47 Cao Y, Tian N, Bahr D et al. The influence of cellulose nanocrystals on the microstructure of cement paste. Cement Concrete Comp. 74, 164–173 (2016).
    • 48 Sunasee R, Hemraz UD, Ckless K. Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications. Expert. Opin. Drug Deliv. 13(9), 1243–1256 (2016).
    • 49 Rosalia RA, Cruz LJ, Van Duikeren S et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40, 88–97 (2015).
    • 50 Rahimian S, Fransen MF, Kleinovink JW et al. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. J. Control. Rel. 203, 16–22 (2015).
    • 51 Brunsveld L, Folmer B, Meijer EW, Sijbesma R. Supramolecular polymers. Chem. Rev. 101(12), 4071–4098 (2001).
    • 52 Tian Y, Wang H, Liu Y et al. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine. Nano Lett. 14(3), 1439–1445 (2014).
    • 53 Adams JR, Haughney SL, Mallapragada SK. Effective polymer adjuvants for sustained delivery of protein subunit vaccines. Acta Biomater. 14, 104–114 (2015).
    • 54 Luo Z, Wang C, Yi H et al. Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 38, 50–60 (2015).
    • 55 Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923), 59–63 (2009).
    • 56 Cao Y, Zavattieri P, Youngblood J, Moon R, Weiss J. The relationship between cellulose nanocrystal dispersion and strength. Constr. Build Mater. 119, 71–79 (2016).
    • 57 Li D, Kordalivand N, Fransen MF et al. Reduction-sensitive dextran nanogels aimed for intracellular delivery of antigens. Adv. Funct. Mater. 25(20), 2993–3003 (2015).
    • 58 Li D, Chen Y, Mastrobattista E, Van Nostrum CF, Hennink WE, Vermonden T. Reduction-sensitive polymer-shell-coated nanogels for intracellular delivery of antigens. ACS Appl. Mater. Interfaces 3(1), 42–48 (2016).
    • 59 De Koker S, Cui J, Vanparijs N et al. Engineering polymer hydrogel nanoparticles for lymph node-targeted delivery. Angew. Chem. Int. Ed. 55(4), 1334–1339 (2016).
    • 60 Zeng Q, Li H, Jiang H et al. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials 122, 105–113 (2017).
    • 61 Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem. Commun. 49(21), 2082–2102 (2013).
    • 62 Hu R, Zheng H, Cao J, Davoudi Z, Wang Q. Self-assembled hyaluronic acid nanoparticles for pH-sensitive release of doxorubicin: synthesis and in vitro characterization. J. Biomed. Nanotechnol. 13(9), 1058–1068 (2017).
    • 63 Wilson JT, Keller S, Manganiello MJ et al. pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano. 7(5), 3912 (2013).
    • 64 Fang RH, Hu C-MJ, Luk BT et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano. Lett. 14(4), 2181–2188 (2014).
    • 65 Lybaert L, Vanparijs N, Fierens K et al. A generic polymer–protein ligation strategy for vaccine delivery. Biomacromolecules 17(3), 874–881 (2016).
    • 66 Heegaard PM, Boas U, Sorensen NS. Dendrimers for vaccine and immunostimulatory uses. A review. Bioconjug. Chem. 21(3), 405–418 (2009).
    • 67 Liu T-Y, Hussein WM, Jia Z et al. Self-adjuvanting polymer–peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 14(8), 2798–2806 (2013).
    • 68 Allison A, Gregoriadis G. Liposomes as immunological adjuvants. Nature 252(5480), 252–252 (1974).
    • 69 Cao J, Wang R, Gao N et al. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater. Sci. 3(12), 1545–1554 (2015).
    • 70 Li M, Yu H, Wang T et al. Tamoxifen embedded in lipid bilayer improves the oncotarget of liposomal daunorubicin in vivo . . J. Mater. Chem. B 2(12), 1619–1625 (2014).
    • 71 Nguyen TX, Huang L, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine 11(9), 1169–1185 (2016).
    • 72 Watarai S, Iwase T, Tajima T, Yuba E, Kono K, Sekiya Y. Application of pH-sensitive fusogenic polymer-modified liposomes for development of mucosal vaccines. Vet. Immunol. Immunopathol. 158(1), 62–72 (2014).
    • 73 Miyabe H, Hyodo M, Nakamura T, Sato Y, Hayakawa Y, Harashima H. A new adjuvant delivery system ‘cyclic di-GMP/YSK05 liposome’ for cancer immunotherapy. J. Control. Rel. 184, 20–27 (2014).
    • 74 Xu Z, Wang Y, Zhang L, Huang L. Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano. 8(4), 3636 (2014).
    • 75 Varypataki EM, Van Der Maaden K, Bouwstra J, Ossendorp F, Jiskoot W. Cationic liposomes loaded with a synthetic long peptide and poly (I:C): a defined adjuvanted vaccine for induction of antigen-specific T cell cytotoxicity. AAPS J. 17(1), 216–226 (2015).
    • 76 Zhou Z, Mondal M, Liao G, Guo Z. Synthesis and evaluation of monophosphoryl lipid A derivatives as fully synthetic self-adjuvanting glycoconjugate cancer vaccine carriers. Org. Biomol. Chem. 12(20), 3238–3245 (2014).
    • 77 Hjalmsdottir A, BüHler CL, Vonwil V et al. Cytosolic delivery of liposomal vaccines by means of the concomitant photosensitization of phagosomes. Mol. Pharm. 13(2), 320–329 (2016).
    • 78 Karmakar P, Lee K, Sarkar S, Wall KA, Sucheck SJ. Synthesis of a liposomal MUC1 glycopeptide-based immunotherapeutic and evaluation of the effect of L-rhamnose targeting on cellular immune responses. Bioconjug. Chem. 27(1), 110 (2016).
    • 79 Rueda F, Eich C, Cordobilla B et al. Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines. Immunobiology 222(11), 989–997 (2017).
    • 80 Yuba E, Tajima N, Yoshizaki Y, Harada A, Hayashi H, Kono K. Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy. Biomaterials 35(9), 3091–3101 (2014).
    • 81 Gao J, Ochyl LJ, Yang E, Moon JJ. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. Int. J. Nanomed. 12, 1251 (2017).
    • 82 Korsholm KS, Hansen J, Karlsen K et al. Induction of CD8+ T cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine 32(31), 3927–3935 (2014).
    • 83 Garu A, Moku G, Gulla SK, Chaudhuri A. Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol. Ther. 24(2), 385–397 (2016).
    • 84 Oskuee RK, Mahmoudi A, Gholami L, Rahmatkhah A, Malaekeh-Nikouei B. Cationic liposomes modified with polyallylamine as a gene carrier: preparation, characterization and transfection efficiency evaluation. Adv. Pharm. Bull. 6(4), 515 (2016).
    • 85 Iwama T, Uchida T, Sawada Y et al. Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice. Biochem. Biophys. Res. Commun. 469(1), 138–143 (2016).
    • 86 Shariat S, Badiee A, Jalali SA et al. P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer. Cancer Lett. 355(1), 54–60 (2014).
    • 87 Wang C, Liu P, Zhuang Y et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine 32(42), 5475–5483 (2014).
    • 88 Jiang P-L, Lin H-J, Wang H-W et al. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater. 11, 356–367 (2015).
    • 89 Unger WWJ, Van Beelen AJ, Bruijns SC et al. Glycan-modified liposomes boost CD4+ and CD8+ T cell responses by targeting DC-SIGN on dendritic cells. J. Control. Rel. 160(1), 88–95 (2012).
    • 90 Zheng H, Hu Y, Huang W et al. Negatively charged carbon nanohorn supported cationic liposome nanoparticles: a novel delivery vehicle for anti-nicotine vaccine. J. Biomed. Nanotechnol. 11(12), 2197–2210 (2015).
    • 91 Fan Y, Sahdev P, Ochyl LJ, Akerberg JJ, Moon JJ. Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J. Control. Rel. 208, 121–129 (2015).
    • 92 Lin AY, Lunsford J, Bear AS et al. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro. Nanoscale Res. Lett. 8(1), 72 (2013).
    • 93 Jazayeri SD, Ideris A, Zakaria Z, Shameli K, Moeini H, Omar AR. Cytotoxicity and immunological responses following oral vaccination of nanoencapsulated avian influenza virus H5 DNA vaccine with green synthesis silver nanoparticles. J. Control. Rel. 161(1), 116–123 (2012).
    • 94 Li H, Li Y, Jiao J, Hu H-M. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat. Nanotechnol. 6(10), 645–650 (2011).
    • 95 Hassan HA, Smyth L, Rubio N et al. Carbon nanotubes’ surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo. J. Control. Rel. 225, 205–216 (2016).
    • 96 An M, Li M, Xi J, Liu H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl. Mater. Interfaces 9(28), 23466–23475 (2017).
    • 97 Al-Deen FMN, Xiang SD, Ma C et al. Magnetic nanovectors for the development of DNA blood-stage malaria vaccines. Nanomaterials 7(2), 30 (2017).
    • 98 Sokolova V, Shi Z, Huang S et al. Delivery of the TLR ligand poly (I:C) to liver cells in vitro and in vivo by calcium phosphate nanoparticles leads to a pronounced immunostimulation. Acta Biomater. 64, 401–410 (2017).
    • 99 Zhao K, Rong G, Hao Y et al. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@ SiO2 hollow nanoparticles. Sci. Rep. 6, 25720 (2016).
    • 100 Li X, Aldayel AM, Cui Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J. Control. Rel. 173, 148–157 (2014).
    • 101 Wang T, Zhen Y, Ma X, Wei B, Wang N. Phospholipid bilayer-coated aluminum nanoparticles as an effective vaccine adjuvant-delivery system. ACS Appl. Mater. Interfaces 7(12), 6391–6396 (2015).
    • 102 Kang S, Ahn S, Lee J et al. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J. Control. Rel. 256, 56–67 (2017).
    • 103 Niikura K, Matsunaga T, Suzuki T et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 7(5), 3926–3938 (2013).
    • 104 Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small 11(12), 1453–1459 (2015).
    • 105 Parry AL, Clemson NA, Ellis J, Bernhard SS, Davis BG, Cameron NR. ‘Multicopy multivalent’ glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines. J. Am. Chem. Soc. 135(25), 9362–9365 (2013).
    • 106 Al-Deen FN, Selomulya C, Ma C, Coppel RL. Superparamagnetic nanoparticle delivery of DNA vaccine. Methods Mol. Biol. 1143, 181–194 (2014).
    • 107 Al-Deen FN, Selomulya C, Kong Y et al. Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery. Gene Ther. 21(2), 212 (2014).
    • 108 Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63(9), 789–808 (2011).
    • 109 Kobayashi T, Kakimi K, Nakayama E, Jimbow K. Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine 9(11), 1715–1726 (2014).
    • 110 Tanaka K, Ito A, Kobayashi T et al. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int. J. Cancer 116(4), 624–633 (2005).
    • 111 Jin H, Qian Y, Dai Y et al. Magnetic enrichment of dendritic cell vaccine in lymph node with fluorescent-magnetic nanoparticles enhanced cancer immunotherapy. Theranostics 6(11), 2000 (2016).
    • 112 Zhou S, Li H-F, Garlapalli R et al. Hydrolysis of model cellulose films by cellulosomes: extension of quartz crystal microbalance technique to multienzymatic complexes. J. Biotechnol. 241, 42–49 (2017).
    • 113 Zhou S, Schlipf DM, Guilfoil EC, Rankin SE, Knutson BL. Lipid pore-filled silica thin-film membranes for biomimetic recovery of dilute carbohydrates. Langmuir 33(49), 14156–14166 (2017).
    • 114 Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 41(9), 3679–3698 (2012).
    • 115 Mahony D, Cavallaro AS, Stahr F, Mahony TJ, Qiao SZ, Mitter N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small 9(18), 3138–3146 (2013).
    • 116 Virginio VG, Bandeira NC, Dos Anjos Leal FM, Lancellotti M, Zaha A, Ferreira HB. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines. Heliyon 3(1), e00225 (2017).
    • 117 Harper DM, Franco EL, Wheeler CM et al. Sustained efficacy up to 4· 5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus Types 16 and 18: follow-up from a randomised control trial. Lancet 367(9518), 1247–1255 (2006).
    • 118 Schiller JT, Castellsagué X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30, F123–F138 (2012).
    • 119 Joura EA, Giuliano AR, Iversen O-E et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 372(8), 711–723 (2015).
    • 120 Lizotte P, Wen A, Sheen M et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 11(3), 295 (2016).
    • 121 Lu Y, Chan W, Ko BY, Vanlang CC, Swartz JR. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc. Natl. Acad. Sci. USA 112(40), 12360–12365 (2015).
    • 122 Taylor GS, Jia H, Harrington K et al. A recombinant modified vaccinia ankara vaccine encoding Epstein–Barr virus (EBV) target antigens: a Phase I trial in UK patients with EBV-positive cancer. Clin. Cancer. Res. 20, 5009–5022 (2014).
    • 123 Kanekiyo M, Bu W, Joyce MG et al. Rational design of an Epstein-Barr virus vaccine targeting the receptor-binding site. Cell 162(5), 1090–1100 (2015).
    • 124 Molino NM, Neek M, Tucker JA, Nelson EL, Wang S-W. Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses. Biomaterials 86, 83–91 (2016).
    • 125 Sather S, Kenyon KD, Lefkowitz JB et al. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109(3), 1026–1033 (2007).
    • 126 Morgan AG, Soothill JF. Measurement of the clearance function of macrophages with (125)I-labelled polyvinyl pyrrolidone. Clin. Exp. Immunol. 20(3), 489–498 (1975).
    • 127 Garcia KP, Zarschler K, Barbaro L et al. Zwitterionic-coated “Stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13), 2516–2529 (2014).
    • 128 Ruge CA, Schaefer UF, Herrmann J et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS ONE 7(7), e40775 (2012).
    • 129 Moghimi SM, Patel HM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system – The concept of tissue specificity. Adv. Drug Deliv. Rev. 32(1–2), 45–60 (1998).
    • 130 Choi HS, Liu W, Misra P et al. Renal clearance of nanoparticles. Nat. Biotechnol. 25(10), 1165 (2007).
    • 131 Zhou C, Long M, Qin Y, Sun X, Zheng J. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. 123(14), 3226–3230 (2011).
    • 132 Yang S, Sun S, Zhou C et al. Renal clearance and degradation of glutathione-coated copper nanoparticles. Bioconjug. Chem. 26(3), 511–519 (2015).
    • 133 Tang S, Chen M, Zheng N. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small 10(15), 3139–3144 (2014).
    • 134 Alric C, Miladi I, Kryza D et al. The biodistribution of gold nanoparticles designed for renal clearance. Nanoscale 5(13), 5930–5939 (2013).
    • 135 Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J. Control. Rel. 70(3), 353–363 (2001).
    • 136 Hirn S, Semmler-Behnke M, Schleh C et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 77(3), 407–416 (2011).
    • 137 Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105(5), 1410–1415 (2008).
    • 138 Bulte JW, Schmieder AH, Keupp J, Caruthers SD, Wickline SA, Lanza GM. MR cholangiography demonstrates unsuspected rapid biliary clearance of nanoparticles in rodents: implications for clinical translation. Nanomed. Nanotech. Biol. Med. 10(7), 1385–1388 (2014).
    • 139 Wilhelm S, Tavares AJ, Dai Q et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).
    • 140 Sarmento B, Mazzaglia D, Bonferoni MC, Neto AP, Do Céu Monteiro M, Seabra V. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr. Polym. 84(3), 919–925 (2011).
    • 141 Li S-D, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. BBA Biomemb. 1788(10), 2259–2266 (2009).
    • 142 Zhang X-D, Yang J, Song S-S et al. Passing through the renal clearance barrier: toward ultrasmall sizes with stable ligands for potential clinical applications. Int. J. Nanomedicine 9, 2069 (2014).
    • 143 He Q, Zhang J, Shi J et al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31(6), 1085–1092 (2010).
    • 144 Wei H, Bruns OT, Chen O, Bawendi MG. Compact zwitterion-coated iron oxide nanoparticles for in vitro and in vivo imaging. Integr. Biol. 5(1), 108–114 (2013).
    • 145 Meister A, Anderson ME. Glutathione. Annu. Rev. Biochem. 52(1), 711–760 (1983).
    • 146 Vinluan III RD, Liu J, Zhou C et al. Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption. ACS Appl. Mater. Interfaces 6(15), 11829–11833 (2014).
    • 147 Shann SY, Lau CM, Thomas SN et al. Size-and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Int. J. Nanomedicine 7, 799 (2012).
    • 148 Lüscher TF, Landmesser U, Von Eckardstein A, Fogelman AM. High-density lipoprotein. Circ. Res. 114(1), 171–182 (2014).
    • 149 Mo Z-C, Ren K, Liu X, Tang Z-L, Yi G-H. A high-density lipoprotein-mediated drug delivery system. Adv. Drug Deliv. Rev. 106, 132–147 (2016).
    • 150 Luthi AJ, Patel PC, Ko CH, Mutharasan RK, Mirkin CA, Thaxton CS. Nanotechnology for synthetic high-density lipoproteins. Trends Mol. Med. 16(12), 553–560 (2010).
    • 151 Huang J-L, Jiang G, Song Q-X et al. High-density lipoprotein-biomimetic nanocarriers for glioblastoma-targeting delivery: the effect of shape. Pharmazie Int. J. Pharm. Sci. 71(12), 709–714 (2016).
    • 152 Cormode DP, Skajaa T, Van Schooneveld MM et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 8(11), 3715 (2008).
    • 153 Nandwana V, Ryoo S-R, Kanthala S et al. High-density lipoprotein-like magnetic nanostructures (HDL-MNS): theranostic agents for cardiovascular disease. Chem. Mater. 29(5), 2276–2282 (2017).
    • 154 Qian Y, Jin H, Qiao S et al. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 98, 171–183 (2016).
    • 155 Qian Y, Qiao S, Dai Y et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 11(9), 9536–9549 (2017).
    • 156 Zhang Z, Cao W, Jin H et al. Biomimetic nanocarrier for direct cytosolic drug delivery. Angew. Chem. Int. Ed. 48(48), 9171–9175 (2009). •• Excellent research on using high-density lipoprotein-mimicking nanoparticles.
    • 157 Banik B, Wen R, Marrache S et al. Core hydrophobicity tuning of a self-assembled particle results in efficient lipid reduction and favorable organ distribution. Nanoscale 10(1), 366–377 (2018).
    • 158 Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16(4), 489 (2017).
    • 159 Kuai R, Subramanian C, White PT et al. Synthetic high-density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma. Int. J. Nanomedicine 12, 6581 (2017).
    • 160 Nikanjam M, Blakely EA, Bjornstad KA, Shu X, Budinger TF, Forte TM. Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int. J. Pharm. 328(1), 86–94 (2007).
    • 161 Barel A, Jori G, Perin A, Romandini P, Pagnan A, Biffanti S. Role of high-, low-and very low-density lipoproteins in the transport and tumor-delivery of hematoporphyrin in vivo . . Cancer Lett. 32(2), 145–150 (1986).
    • 162 Krieger M, Anderson RG, Goldstein JL et al. Reconstituted low density lipoprotein: a vehicle for the delivery of hydrophobic fluorescent probes to cells. J. Cell. Biochem. 10(4), 467–478 (1979).
    • 163 Zhu C, Pradhan P, Huo D et al. Reconstitution of low-density lipoproteins with fatty acids for the targeted delivery of drugs into cancer cells. Angew. Chem. Int. Ed. Engl. 56, 10399–10402 (2017).
    • 164 Xiang J, Xu L, Gong H et al. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano. 9(6), 6401–6411 (2015).
    • 165 Guo H, Hao R, Qian H et al. Upconversion nanoparticles modified with aminosilanes as carriers of DNA vaccine for foot-and-mouth disease. Appl. Microbiol. Biotechnol. 95(5), 1253–1263 (2012).