We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Potential use of nanocarriers with pentacyclic triterpenes in cancer treatments

    Karina Valdés

    *Author for correspondence:

    E-mail Address: kvaldes@ciq.uchile.cl

    Departamento de Ciencias y Tecnología Farmacéutica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile

    ,
    Javier Morales

    Departamento de Ciencias y Tecnología Farmacéutica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile

    ,
    Lennin Rodríguez

    Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú

    &
    Germán Günther

    Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile

    Published Online:https://doi.org/10.2217/nnm-2016-0251

    Ursolic, oleanolic and betulinic acids are representative pentacyclic triterpenoids found in various plants and fruits. Despite having marked antitumor potentials, the very poor water solubility of these triterpenes hinders treatment development. Nanotechnology can enhance solubility, stability, bioavailability and phytochemical delivery, improving the therapeutic efficiency of triterpenes. This review focuses on the formulation, characterization and in vitro/in vivo evaluation of several delivery nanosystems used to enhance the physicochemical properties of ursolic, oleanolic and betulinic acids.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclic triterpene distribution in various plants – rich sources for a new group of multi-potent plant extracts. Molecules 14(6), 2016–2031 (2009).
    • 2 Zhang W, Men X, Lei P. Review on anti-tumor effect of triterpene acid compounds. J. Cancer Res. Ther. 10(5), 14 (2014).
    • 3 Laszczyk MN. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 75(15), 1549–1560 (2009). • Summarizes the potential of triterpenes belonging to the lupane, oleanane or ursane group, to treat cancer by different modes of action.
    • 4 Chudzik M, Korzonek-Szlacheta I, Król W. Triterpenes as potentially cytotoxic compounds. Molecules 20(1), 1610–1625 (2015).
    • 5 Jeong DW, Kim YH, Kim HH et al. Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm. Drug Dispos. 28(2), 51–57 (2007).
    • 6 Jäger S, Laszczyk MN, Scheffler A. A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from extract of outer bark of birch (Betulae alba cortex). Molecules 13(12), 3224–3235 (2008).
    • 7 Yin M-C, Lin M-C, Mong M-C, Lin C-Y. Bioavailability, distribution, and antioxidative effects of selected triterpenes in mice. J. Agric. Food Chem. 60(31), 7697–7701 (2012).
    • 8 Xie J, Yang ZG, Zhou CG, Zhu J, Lee RJ, Teng LS. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol. Adv. 34(4), 343–353 (2016).
    • 9 Li Z, Jiang H, Xu CM, Gu LW. A review: using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloid 43, 153–164 (2015).
    • 10 Gunther G, Berrios E, Pizarro N et al. Flavonoids in microheterogeneous media, relationship between their relative location and their reactivity towards singlet oxygen. PLoS ONE 10(6), e0129749 (2015).
    • 11 Pisha E, Chai H, Lee I-S et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med. 1(10), 1046–1051 (1995). • First report of triterpens as a inhibitor of human melanoma.
    • 12 Lúcio KA, Rocha Gda G, Monção-Ribeiro LC, Fernandes J, Takiya CM, Gattass CR. Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo. PLoS ONE 6(12), e28596 (2011).
    • 13 Allouche Y, Warleta F, Campos MA et al. Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage. J. Agric. Food Chem. 59(1), 121–130 (2010).
    • 14 George VC, Kumar DRN, Suresh PK, Kumar RA. Oleanolic acid inhibits cell growth and induces apoptosis in A375 melanoma cells. Biomed. Prev. Nutr. 4(2), 95–99 (2014).
    • 15 Wei J, Liu H, Liu M et al. Oleanolic acid potentiates the antitumor activity of 5-fluorouracil in pancreatic cancer cells. Oncol. Rep. 28(4), 1339–1345 (2012).
    • 16 Villar VH, Vögler O, Barceló F et al. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein. J. Nutr. Biochem. 25(4), 429–438 (2014).
    • 17 Yan S-L, Huang C-Y, Wu S-T, Yin M-C. Oleanolic acid and ursolic acid induce apoptosis in four human liver cancer cell lines. Toxicol. In Vitro 24(3), 842–848 (2010).
    • 18 Chakravarti B, Maurya R, Siddiqui JA et al. In vitro anti-breast cancer activity of ethanolic extract of Wrightia tomentosa: role of pro-apoptotic effects of oleanolic acid and urosolic acid. J. Ethnopharmacol. 142(1), 72–79 (2012).
    • 19 Wang X, Zhang F, Yang L et al. Ursolic acid inhibits proliferation and induces apoptosis of cancer cells in vitro and in vivo. BioMed Res. Int. 2011, 419343 (2011).
    • 20 Wang J, Liu L, Qiu H et al. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells. PLoS ONE 8(5), e63872 (2013).
    • 21 Weng H, Tan Z-J, Hu Y-P et al. Ursolic acid induces cell cycle arrest and apoptosis of gallbladder carcinoma cells. Cancer Cell Int. 14(96), 1–10 (2014).
    • 22 Nam H, Kim M-M. Ursolic acid induces apoptosis of SW480 cells via p53 activation. Food Chem. Toxicol. 62, 579–583 (2013).
    • 23 Lin D, Zhang R, Feng T, Chen LI, Ying-Ying X, Tao X. Ursolic acid induces U937 cells differentiation by PI3K/Akt pathway activation. Chin. J. Nat. Med. 12(1), 15–19 (2014).
    • 24 Park J-H, Kwon H-Y, Sohn EJ et al. Inhibition of Wnt/β-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells. Pharmacol. Rep. 65(5), 1366–1374 (2013).
    • 25 Gao N, Cheng S, Budhraja A et al. Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway. Br. J. Pharmacol. 165(6), 1813–1826 (2012).
    • 26 Kim KH, Seo HS, Choi HS, Choi I, Shin YC, Ko S-G. Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Arch. Pharmacal Res. 34(8), 1363–1372 (2011).
    • 27 Shin SW, Park J-W. Ursolic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis. Biochim. Biophys. Acta 1833(3), 723–730 (2013).
    • 28 Zheng Q-Y, Li P-P, Jin F-S et al. Ursolic acid induces ER stress response to activate ASK1–JNK signaling and induce apoptosis in human bladder cancer T24 cells. Cell Signal. 25(1), 206–213 (2013).
    • 29 Zheng Q-Y, Jin F-S, Yao C, Zhang T, Zhang G-H, Ai X. Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem. Biophys. Res. Commun. 419(4), 741–747 (2012).
    • 30 Xavier CPR, Lima CF, Pedro DFN, Wilson JM, Kristiansen K, Pereira-Wilson C. Ursolic acid induces cell death and modulates autophagy through JNK pathway in apoptosis-resistant colorectal cancer cells. J. Nutr. Biochem. 24(4), 706–712 (2013).
    • 31 Limami Y, Pinon A, Leger DY et al. The P2Y 2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells. Biochimie 94(8), 1754–1763 (2012).
    • 32 Shin SW, Kim SY, Park J-W. Autophagy inhibition enhances ursolic acid-induced apoptosis in PC3 cells. Biochim. Biophys. Acta 1823(2), 451–457 (2012).
    • 33 Huang C-Y, Lin C-Y, Tsai C-W, Yin M-C. Inhibition of cell proliferation, invasion and migration by ursolic acid in human lung cancer cell lines. Toxicol. In Vitro 25(7), 1274–1280 (2011).
    • 34 Limami Y, Pinon A, Leger DY et al. HT-29 colorectal cancer cells undergoing apoptosis overexpress COX-2 to delay ursolic acid-induced cell death. Biochimie 93(4), 749–757 (2011).
    • 35 Messner B, Zeller I, Ploner C et al. Ursolic acid causes DNA-damage, p53-mediated, mitochondria-and caspase-dependent human endothelial cell apoptosis, and accelerates atherosclerotic plaque formation in vivo. Atherosclerosis 219(2), 402–408 (2011).
    • 36 Foo JB, Yazan LS, Tor YS et al. Induction of cell cycle arrest and apoptosis by betulinic acid-rich fraction from Dillenia suffruticosa root in MCF-7 cells involved p53/p21 and mitochondrial signalling pathway. J. Ethnopharmacol. 166, 270–278 (2015).
    • 37 Dash SK, Chattopadhyay S, Tripathy S et al. Self-assembled betulinic acid augments immunomodulatory activity associates with IgG response. Biomed. Pharmacother. 75, 205–217 (2015).
    • 38 Potze L, Mullauer FB, Colak S, Kessler JH, Medema JP. Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death Dis. 5, e1169 (2014).
    • 39 Yang J, Qiu B, Li X, Zhang H, Liu W. p53-p66 shc/miR-21-Sod2 signaling is critical for the inhibitory effect of betulinic acid on hepatocellular carcinoma. Toxicol. Lett. 238(3), 1–10 (2015).
    • 40 Martins WK, Costa ÉT, Cruz MC et al. Parallel damage in mitochondrial and lysosomal compartments promotes efficient cell death with autophagy: The case of the pentacyclic triterpenoids. Sci. Rep. 5, 12425 (2015).
    • 41 Jung J. Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol. Res. 30(1), 1–5 (2014).
    • 42 Saraswati S, Agrawal SS, Alhaider AA. Ursolic acid inhibits tumor angiogenesis and induces apoptosis through mitochondrial-dependent pathway in Ehrlich ascites carcinoma tumor. Chem. Biol. Interact. 206(2), 153–165 (2013).
    • 43 Wang X, Bai H, Zhang X et al. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK–p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis 34(6), 1323–1330 (2013).
    • 44 Li L, Wei LH, Shen A, Chu JF, Lin JM, Peng J. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth. Int. J. Oncol. 47(6), 2247–2254 (2015).
    • 45 Gao Y, Jia ZL, Kong XY et al. Combining betulinic acid and mithramycin A effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis. Cancer Res. 71(15), 5182–5193 (2011).
    • 46 Hsu TI, Wang MC, Chen SY et al. Betulinic acid decreases specificity protein 1 (Sp1) level via increasing the sumoylation of Sp1 to inhibit lung cancer growth. Mol. Pharmacol. 82(6), 1115–1128 (2012).
    • 47 Hsu TI, Chen YJ, Hung CY et al. A novel derivative of betulinic acid, SYK023, suppresses lung cancer growth and malignancy. Oncotarget 6(15), 13671–13687 (2015).
    • 48 Mertens-Talcott SU, Noratto GD, Li XR, Angel-Morales G, Bertoldi MC, Safe S. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and MicroRNA-27a:ZBTB10. Mol. Carcinog. 52(8), 591–602 (2013).
    • 49 Song M, Hang T-J, Wang Y et al. Determination of oleanolic acid in human plasma and study of its pharmacokinetics in Chinese healthy male volunteers by HPLC tandem mass spectrometry. J. Pharm. Biomed. Anal. 40(1), 190–196 (2006).
    • 50 Liao Q, Yang W, Jia Y, Chen X, Gao Q, Bi K. LC-MS determination and pharmacokinetic studies of ursolic acid in rat plasma after administration of the traditional chinese medicinal preparation Lu-Ying extract. Yakugaku Zasshi 125(6), 509–515 (2005).
    • 51 Cheng X, Shin YG, Levine BS, Smith AC, Tomaszewski JE, Van Breemen RB. Quantitative analysis of betulinic acid in mouse, rat and dog plasma using electrospray liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 17(18), 2089–2092 (2003).
    • 52 Chen Q, Luo S, Zhang Y, Chen Z. Development of a liquid chromatography–mass spectrometry method for the determination of ursolic acid in rat plasma and tissue: application to the pharmacokinetic and tissue distribution study. Anal. Bioanal. Chem. 399(8), 2877–2884 (2011).
    • 53 Hirsh S, Huber L, Zhang P, Stein R, Joyal S. A single ascending dose, initial clinical pharmacokinetic and safety study of ursolic acid in healthy adult volunteers. FASEB J. 28(Suppl. 1), 1044 (2014).
    • 54 Udeani GO, Zhao GM, Geun Shin Y et al. Pharmacokinetics and tissue distribution of betulinic acid in CD-1 mice1. Biopharm. Drug Disposition 20(8), 379–383 (1999).
    • 55 Subramanyam R, Gollapudi A, Bonigala P, Chinnaboina M, Amooru DG. Betulinic acid binding to human serum albumin: a study of protein conformation and binding affinity. J. Photochem. Photobiol. B 294(1), 8–12 (2009).
    • 56 Shetty P, Mangaonkar K, Sane R, Jaripatke K, Singh S. Pharmacokinetic analysis of ursolic acid in Alstonia scholaris R. Br. by high-performance thin-layer chromatography. JPC J. Planar Chromatogr. Modern TLC 20(2), 117–120 (2007).
    • 57 Ji HY, Shin BS, Jeong DW et al. Interspecies scaling of oleanolic acid in mice, rats, rabbits and dogs and prediction of human pharmacokinetics. Arch. Pharm. Res. 32(2), 251–257 (2009).
    • 58 Chen RJ, Liu X, Li PM, Zhang L, Zhao L, Zhang XL. Pharmacokinetic profiles of oleanolic acid formulations in healthy Chinese male volunteers. Chin. Pharm. J. 45, 621–626 (2010).
    • 59 Rada M, Castellano JM, Perona JS, Guinda Á. GC-FID determination and pharmacokinetic studies of oleanolic acid in human serum. Biomed. Chromatogr. 29(11), 1687–1692 (2015).
    • 60 Du H, Chen X. CD-MEKC method to analyze triterpene acids in traditional Chinese medicines. J. Braz. Chem. Soc. 20(7), 1268–1274 (2009).
    • 61 Shanmugam MK, Dai X, Kumar AP, Tan BKH, Sethi G, Bishayee A. Ursolic acid in cancer prevention and treatment: molecular targets, pharmacokinetics and clinical studies. Biochem. Pharmacol. 85(11), 1579–1587 (2013).
    • 62 Xi J, Chang Q, Chan CK et al. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPS PharmSciTech 10(1), 172–182 (2009).
    • 63 Qiang Z, Ye Z, Hauck C et al. Permeability of rosmarinic acid in Prunella vulgaris and ursolic acid in Salvia officinalis extracts across Caco-2 cell monolayers. J. Ethnopharmacol. 137(3), 1107–1112 (2011).
    • 64 Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 334(1), 133–141 (2013).
    • 65 Valdes K, Morilla MJ, Romero E, Chavez J. Physicochemical characterization and cytotoxic studies of nonionic surfactant vesicles using sucrose esters as oral delivery systems. Colloid Surf. B 117, 1–6 (2014).
    • 66 Morales JO, Valdes K, Morales J, Oyarzun-Ampuero F. Lipid nanoparticles for the topical delivery of retinoids and derivatives. Nanomedicine 10(2), 253–269 (2015).
    • 67 Chuan LI, Zhang J, Yu-Jiao ZU et al. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin. J. Nat. Med. 13(9), 641–652 (2015).
    • 68 Gao Y, Xie J, Chen H et al. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv. 32(4), 761–777 (2014). •• Examines nanotechnology and strategies for intelligent design of new nanomedicines for cancer metastasis treatment.
    • 69 Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Del. Rev. 66, 2–25 (2014).
    • 70 Amiji MM. Nanotechnology for Cancer Therapy. CRC Press, USA (2006).
    • 71 Cancer Nanotechnology, Methods and Protocols. Grobmyer SR, Moudgil BM (Eds). Springer (2010).
    • 72 Wang S, Su R, Nie S et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem. 25(4), 363–376 (2014).
    • 73 Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem. Rev. 115(19), 10938–10966 (2015).
    • 74 Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv. Colloid Interface Sci. 58(1), 1–55 (1995).
    • 75 Sandoval C, Ortega A, Sanchez SA, Morales J, Gunther G. Structuration in the interface of direct and reversed micelles of sucrose esters, studied by fluorescent techniques. PLoS ONE 10(4), e0123669 (2015).
    • 76 Han SK, Ko YI, Park SJ, Jin IJ, Kim YM. Oleanolic acid and ursolic acid stabilize liposomal membranes. Lipids 32(7), 769–773 (1997).
    • 77 Both DM, Goodtzova K, Yarosh DB, Brown DA. Liposome-encapsulated ursolic acid increases ceramides and collagen in human skin cells. Arch. Dermatol. Res. 293(11), 569–575 (2002).
    • 78 Caldeira De Araújo Lopes S, Vinícius Melo Novais M, Salviano Teixeira C et al. Preparation, physicochemical characterization, and cell viability evaluation of long-circulating and pH-sensitive liposomes containing ursolic acid. BioMed. Res. Int. 2013, 467147 (2013).
    • 79 Kang HS, Park J-E, Lee Y-J, Chang I-S, Chung Y-I, Tae G. Preparation of liposomes containing oleanolic acid via micelle-to-vesicle transition. J. Nanosci. Nanotechnol. 7(11), 3944–3948 (2007).
    • 80 Gao D, Tang S, Tong Q. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery. Int. J. Nanomed. 7, 3517 (2012).
    • 81 Mullauer FB, Van Bloois L, Daalhuisen JB et al. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anti Cancer Drugs 22(3), 223–233 (2011). •• Interesting in vitro and in vivo results of PEGylated liposomes.
    • 82 Yang G, Yang T, Zhang W, Lu M, Ma X, Xiang G. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. J. Agric. Food Chem. 62(10), 2207–2215 (2014). • Interesting in vitro and in vivo results of ursolic acid-liposomes.
    • 83 Liu YP, Gao DW, Zhang XW et al. Antitumor drug effect of betulinic acid mediated by polyethylene glycol modified liposomes. Mat. Sci. Eng. C Mater. Biol. App. 64, 124–132 (2016).
    • 84 Bian Y, Gao D, Liu Y et al. Preparation and study on anti-tumor effect of chitosan-coated oleanolic acid liposomes. RSC Adv. 5(24), 18725–18732 (2015).
    • 85 Jamal M, Imam SS, Aqil M, Amir M, Mir SR, Mujeeb M. Transdermal potential and anti-arthritic efficacy of ursolic acid from niosomal gel systems. Int. Immunopharmacol. 29(2), 361–369 (2015).
    • 86 Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J. Biomater. Nanobiotechnol. 2(05), 626 (2011).
    • 87 Dehelean CA, Feflea S, Ganta S, Amiji M. Anti-angiogenic effects of betulinic acid administered in nanoemulsion formulation using chorioallantoic membrane assay. J. Biomed. Nanotechnol. 7(2), 317–324 (2011).
    • 88 Cavazos-Garduño A, Flores AaO, Serrano-Niño JC, Martínez-Sanchez CE, Beristain CI, García HS. Preparation of betulinic acid nanoemulsions stabilized by ω-3 enriched phosphatidylcholine. Ultrason. Sonochem. 24, 204–213 (2015).
    • 89 Alvarado HL, Abrego G, Souto EB et al. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: in vitro, ex vivo and in vivo characterization. Colloids Surf. B. Biointerfaces 130, 40–47 (2015).
    • 90 Zhou XJ, Hu XM, Yi YM, Wan J. Preparation and body distribution of freeze-dried powder of ursolic acid phospholipid nanoparticles. Drug Dev. Ind. Pharm. 35(3), 305–310 (2009).
    • 91 Sun Z, Ma CH, Yang L, Zu YG, Zhang RR. Production of ursolic acid nanoparticles by supercritical antisolvent precipitation. Adv. Mater. Res. 233–235, 2210–2214 (2011).
    • 92 Zhang H, Li X, Ding J et al. Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2). Int. J. Pharm. 441(1), 261–268 (2013).
    • 93 Mandelli AM, Nadia A, Denise CJ, Mary KT, Rolim BA, Robles VMV. Evaluation of physical and chemical stability of nanostructured lipid carries containing ursolic acid in cosmetic formulation. J. Appl. Pharm. Sci. 3(1), 5–8 (2013).
    • 94 Kim S-M, Chae MK, Yim MS et al. Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 34(33), 8114–8121 (2013).
    • 95 Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Hussein MZ. The in vitro therapeutic activity of betulinic acid nanocomposite on breast cancer cells (MCF-7) and normal fibroblast cell (3T3). J. Mater. Sci. 49(23), 8171–8182 (2014).
    • 96 Tan JM, Karthivashan G, Arulselvan P, Fakurazi S, Hussein MZ. Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid. Drug Des. Devel. Ther. 8, 2333 (2014).
    • 97 Dai L, Cao X, Liu K-F et al. Self-assembled targeted folate-conjugated eight-arm-polyethylene glycol–betulinic acid nanoparticles for co-delivery of anticancer drugs. J. Mater. Chem. B 3(18), 3754–3766 (2015).
    • 98 Singh R, Bharti N, Madan J, Hiremath SN. Characterization of cyclodextrin inclusion complexes – a review. J. Pharm. Sci. Technol 2(3), 171–183 (2010).
    • 99 Cerga O, Borcan F, Ambrus R, Popovici I. Syntheses of new cyclodextrin complexes with oleanolic and ursolic acids. J. Agroaliment. Process. Technol 17, 405–409 (2011).
    • 100 Sun Y-F, Song C-K, Viernstein H, Unger F, Liang Z-S. Apoptosis of human breast cancer cells induced by microencapsulated betulinic acid from sour jujube fruits through the mitochondria transduction pathway. Food Chem. 138(2), 1998–2007 (2013).
    • 101 Soica C, Danciu C, Savoiu-Balint G et al. Betulinic acid in complex with a gamma-cyclodextrin derivative decreases proliferation and in vivo tumor development of non-metastatic and metastatic B164A5 cells. Int. J. Mol. Sci. 15(5), 8235–8255 (2014).
    • 102 Soica C, Oprean C, Borcan F et al. The synergistic biologic activity of oleanolic and ursolic acids in complex with hydroxypropyl-γ-cyclodextrin. Molecules 19(4), 4924–4940 (2014).
    • 103 Wang Y, Song J, Chow SF, Chow AHL, Zheng Y. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation. Int. J. Pharm. 494(1), 479–489 (2015).
    • 104 Gao Y, Li Z, Xie X et al. Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptor-expressing cancer cells: synthesis and biological evaluation. Eur. J. Pharm. Sci. 70, 55–63 (2015).
    • 105 Li W, Das S, Ng K-Y, Heng PWS. Formulation, biological and pharmacokinetic studies of sucrose ester-stabilized nanosuspensions of oleanolic acid. Pharm. Res. 28(8), 2020–2033 (2011).
    • 106 Zhao T, Liu Y, Gao Z et al. Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes. Mater. Sci. Eng. 53, 196–203 (2015).
    • 107 Wang X-H, Zhou S-Y, Qian Z-Z et al. Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors. Expert Opin. Drug Metab. Toxicol. 9(2), 117–125 (2013). •• First report of ursolic acid-nanocarriers in human.
    • 108 Zhu Z, Qian Z, Yan Z, Zhao C, Wang H, Ying G. A Phase I pharmacokinetic study of ursolic acid nanoliposomes in healthy volunteers and patients with advanced solid tumors. Int. J. Nanomed. 8, 129 (2013).
    • 109 Qian Z, Wang X, Song Z et al. A Phase I trial to evaluate the multiple-dose safety and antitumor activity of ursolic acid liposomes in subjects with advanced solid tumors. BioMed Res. Int. 2015, 809714 (2015).