We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Therapeutic potential of targeting metabotropic glutamate receptors for Parkinson’s disease

    Jonathan W Dickerson

    Vanderbilt University Medical Center, Department of Pharmacology & Center for Neuroscience Drug Discovery, 1205 LH, Nashville, TN 37232, USA

    &
    P Jeffrey Conn

    * Author for correspondence

    Vanderbilt University Medical Center, Department of Pharmacology & Center for Neuroscience Drug Discovery, 1205 LH, Nashville, TN 37232, USA.

    Published Online:https://doi.org/10.2217/nmt.12.6

    SUMMARY Parkinson’s disease (PD) is a progressive neurological disorder predominantly characterized by motor symptoms including bradykinesia and resting tremor. The gold standard of treatment for PD remains dopamine replacement therapy, which eventually fails due to continued progression of the disease and the development of debilitating side effects. Recent breakthroughs are providing the first major advances in the development of fundamentally new pharmacological strategies for the treatment of PD that do not rely on dopamine replacement strategies, but rather aim to reduce the overactive indirect pathway within the basal ganglia. In this article, we will review the role of metabotropic glutamate receptors within the basal ganglia and discuss the potential for modulation of metabotropic glutamate receptors as a treatment for PD.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol.5(6),525–535 (2006).
    • Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease. Neurology72(21),S1–S13 (2009).
    • Chen JJ. Parkinson’s disease: health-related quality of life, economic cost, and implications of early treatment. Am. J. Manage. Care16,S87–S93 (2010).
    • Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci.9,357–381 (1986).
    • Bartels AL, Leenders KL. Parkinson’s disease: the syndrome, the pathogenesis and pathophysiology. Cortex45(8),915–921 (2009).
    • Gerfen CR, Keefe KA, Gauda EB. D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. J. Neurosci.15(12),8167–8176 (1995).
    • DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci.13(7),281–285 (1990).
    • Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci.12(10),366–375 (1989).
    • Limousin P, Pollak P, Benazzouz A et al. Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov. Disord.10(5),672–674 (1995).
    • 10  Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson’s disease. Ann. Neurol.42(3),283–291 (1997).
    • 11  Limousin P, Pollak P, Benazzouz A et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet345(8942),91–95 (1995).
    • 12  Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science249(4975),1436–1438 (1990).
    • 13  Deniau JM, Degos B, Bosch C, Maurice N. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur. J. Neurosci.32(7),1080–1091 (2010).
    • 14  Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol. Rev.51(1),7–61 (1999).
    • 15  Pin JP, Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology34(1),1–26 (1995).
    • 16  Nakanishi S. The molecular diversity of glutamate receptors. Prog. Clin. Biol. Res.390,85–98 (1994).
    • 17  Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol.50,295–322 (2010).
    • 18  Conn PJ, Battaglia G, Marino MJ, Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat. Rev. Neurosci.6(10),787–798 (2005).
    • 19  Smith Y, Charara A, Hanson JE, Paquet M, Levey AI. GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J. Anat.196(4),555–576 (2000).
    • 20  Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P. Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog. Neurobiol.74(5),271–300 (2004).
    • 21  Wigmore MA, Lacey MG. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro. Br. J. Pharmacol.123(4),667–674 (1998).
    • 22  Lovinger DM, McCool BA. Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mGluR2 or 3. J. Neurophysiol.73(3),1076–1083 (1995).
    • 23  Battaglia G, Monn JA, Schoepp DD. In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci. Lett.229(3),161–164 (1997).
    • 24  Cozzi A, Attucci S, Peruginelli F et al. Type 2 metabotropic glutamate (mGlu) receptors tonically inhibit transmitter release in rat caudate nucleus: in vivo studies with (2S,1´S,2´S,3´R)-2-(2´-carboxy-3´-phenylcyclopropyl)glycine, a new potent and selective antagonist. Eur. J. Neurosci.9(7),1350–1355 (1997).
    • 25  Bradley SR, Standaert DG, Rhodes KJ et al. Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. J. Comp. Neurol.407(1),33–46 (1999).
    • 26  Kosinski CM, Risso Bradley S, Conn PJ et al. Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. J. Comp. Neurol.415(2),266–284 (1999).
    • 27  Corti C, Aldegheri L, Somogyi P, Ferraguti F. Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience110(3),403–420 (2002).
    • 28  Duty S. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson’s disease. Br. J. Pharmacol.161(2),271–287 (2010).
    • 29  Messenger MJ, Dawson LG, Duty S. Changes in metabotropic glutamate receptor 1–8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology43(2),261–271 (2002).
    • 30  Testa CM, Standaert DG, Young AB, Penney JB Jr. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci.14(5),3005–3018 (1994).
    • 31  Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J. Neurosci.20(21),7871–7879 (2000).
    • 32  Marino MJ, Awad-Granko H, Ciombor KJ, Conn PJ. Haloperidol-induced alteration in the physiological actions of group I mGlus in the subthalamic nucleus and the substantia nigra pars reticulata. Neuropharmacology43(2),147–159 (2002).
    • 33  Marino MJ, Wittmann M, Bradley SR, Hubert GW, Smith Y, Conn PJ. Activation of group I metabotropic glutamate receptors produces a direct excitation and disinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J. Neurosci.21(18),7001–7012 (2001).
    • 34  Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W. Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res. Bull.69(3),318–326 (2006).
    • 35  Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J. Neurosci.22(13),5669–5678 (2002).
    • 36  Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing parkinsonian deficits in rats. Neuropsychopharmacology29(8),1451–1461 (2004).▪ Demonstrates that combined antagonism of adenosine A2A and metabotropic glutamate (mGlu)5 receptors increases symptomatic efficacy in preclinical models of Parkinson’s disease (PD).
    • 37  Ossowska K, Konieczny J, Wolfarth S, Pilc A. MTEP, a new selective antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5), produces antiparkinsonian-like effects in rats. Neuropharmacology49(4),447–455 (2005).
    • 38  Ossowska K, Konieczny J, Wolfarth S, Wieronska J, Pilc A. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology41(4),413–420 (2001).
    • 39  Pisani A, Gubellini P, Bonsi P et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl D-aspartate responses in medium spiny striatal neurons. Neuroscience106(3),579–587 (2001).
    • 40  Phillips JM, Lam HA, Ackerson LC, Maidment NT. Blockade of mGluR glutamate receptors in the subthalamic nucleus ameliorates motor asymmetry in an animal model of Parkinson’s disease. Eur. J. Neurosci.23(1),151–160 (2006).
    • 41  Wardas J, Pietraszek M, Wolfarth S, Ossowska K. The role of metabotropic glutamate receptors in regulation of striatal proenkephalin expression: implications for the therapy of Parkinson’s disease. Neuroscience122(3),747–756 (2003).
    • 42  Poisik OV, Mannaioni G, Traynelis S, Smith Y, Conn PJ. Distinct functional roles of the metabotropic glutamate receptors 1 and 5 in the rat globus pallidus. J. Neurosci.23(1),122–130 (2003).
    • 43  Poisik OV, Smith Y, Conn PJ. D1- and D2-like dopamine receptors regulate signaling properties of group I metabotropic glutamate receptors in the rat globus pallidus. Eur. J. Neurosci.26(4),852–862 (2007).
    • 44  Spooren WP, Gasparini F, Bergmann R, Kuhn R. Effects of the prototypical mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. Eur. J. Pharmacol.406(3),403–410 (2000).
    • 45  Berg D, Godau J, Trenkwalder C et al. AFQ056 treatment of levodopa-induced dyskinesias: result of 2 randomized controlled trials. Mov. Disord.26(7),1243–1250 (2011).▪▪ Results from a Phase II clinical trial evaluating the use of a mGlu5 receptor negative allosteric modulator for the treatment of levodopa-induced dyskinesias in PD patients.
    • 46  Fenu S, Pinna A, Ongini E, Morelli M. Adenosine A2A receptor antagonism potentiates L-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. Eur. J. Pharmacol.321(2),143–147 (1997).
    • 47  Kanda T, Tashiro T, Kuwana Y, Jenner P. Adenosine A2A receptors modify motor function in MPTP-treated common marmosets. Neuroreport9(12),2857–2860 (1998).
    • 48  Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y. Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology (Berl.)147(1),90–95 (1999).
    • 49  Koga K, Kurokawa M, Ochi M, Nakamura J, Kuwana Y. Adenosine A2A receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-parkinsonian rats. Eur. J. Pharmacol.408(3),249–255 (2000).
    • 50  Hauber W, Neuscheler P, Nagel J, Muller CE. Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A2A receptors in the caudate-putamen of rats. Eur. J. Neurosci.14(8),1287–1293 (2001).
    • 51  Hauser RA, Cantillon M, Pourcher E et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a Phase 2, double-blind, randomised trial. Lancet Neurol.10(3),221–229 (2011).
    • 52  Fuxe K, Agnati LF, Jacobsen K et al.Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology61(11),S19–S23 (2003).
    • 53  Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA. Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J. Neurosci.25(45),10414–10419 (2005).
    • 54  Battaglia G, Busceti CL, Molinaro G et al. Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J. Neurosci.24(4),828–835 (2004).
    • 55  Vernon AC, Palmer S, Datla KP, Zbarsky V, Croucher MJ, Dexter DT. Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson’s disease. Eur. J. Neurosci.22(7),1799–1806 (2005).▪ Evidence of neuroprotective effects for antagonism of group I or agonism of group II or group III mGlu receptors (mGluRs).
    • 56  Masilamoni GJ, Bogenpohl JW, Alagille D et al. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain134(7),2057–2073 (2011).
    • 57  De Leonibus E, Manago F, Giordani F et al. Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson’s disease. Neuropsychopharmacology34(3),729–738 (2009).
    • 58  Palucha A, Pilc A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol. Ther.115(1),116–147 (2007).▪ Review discussing the potential of mGluR modulation as a treatment for anxiety and depression.
    • 59  Samadi P, Gregoire L, Morissette M et al. mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol. Aging29(7),1040–1051 (2008).
    • 60  Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts L-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol. Dis.29(1),161–168 (2008).
    • 61  Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA. Antagonism of metabotropic glutamate receptor Type 5 attenuates L-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J. Neurochem.101(2),483–497 (2007).
    • 62  Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA. Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J. Pharmacol. Exp. Ther.330(1),227–235 (2009).
    • 63  Poli S. Antiparkinsonian and anti-dyskinetic effects of dipraglurant (ADX48621), a novel mGluR5 negative allosteric modulator in clinical development. Presented at: the 7th International Meeting on Metabotropic Glutamate Receptors. Taormina, Sicily, Italy 2–7 October 2011.
    • 64  Battaglia G, Monn JA, Schoepp DD. In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II receptor agonist LY354740 in rats. Neurosci. Lett.229(3),161–164 (1997).
    • 65  Cozzi A, Attucci S, Peruginelli F et al. Type 2 metabotropic glutamate (mGlu) receptors tonically inhibit transmitter release in rat caudate nucleus: in vivo studies with (2S,1S´,2´S,3´R)-2-(2´-carboxy-3´-phenylcyclopropyl)glycine, a new potent and selective antagonist. Eur. J. Neurosci.9(7),1350–1355 (1997).
    • 66  Johnson KA, Niswender CM, Conn PJ, Xiang Z. Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata. Neurosci. Lett.504(2),102–106 (2011).
    • 67  Bradley SR, Marino MJ, Wittmann M et al. Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J. Neurosci.20(9),3085–3094 (2000).
    • 68  Konieczny J, Ossowska K, Wolfarth S, Pilc A. LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats. Naunyn Schmiedebergs Arch. Pharmacol.358(4),500–502 (1998).
    • 69  Murray TK, Messenger MJ, Ward MA et al. Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol. Biochem. Behav.73(2),455–466 (2002).
    • 70  Picconi B, Pisani A, Centonze D et al. Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatement. Brain125(12),2635–2645 (2002).
    • 71  Wittmann M, Marino MJ, Conn PJ. Dopamine modulates the function of group II and group III metabotropic glutamate receptors in the substantia nigra pars reticulata. J. Pharmacol. Exper. Ther.302(2),433–441 (2002).
    • 72  Wang L, Kitai ST, Xiang Z. Modulation of excitatory synaptic transmission by endogenous glutamate acting on presynaptic group II mGluRs in rat substantia nigra compacta. J. Neurosci. Res.82(6),778–787 (2005).
    • 73  Battaglia G, Busceti CL, Pontarelli F et al. Protective role of group-2 metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology45(2),155–166 (2003).
    • 74  Matarredona ER, Santiago M, Venero JL, Cano J, Machado A. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J. Neurochem.76(2),351–360 (2001).
    • 75  Venero JL, Santiago M, Tomas-Camardiel M, Matarredona ER, Cano J, Machado A. DCG-IV but not other group II metabotropic receptor agonists induces microglial BDNF mRNA expression in the rat striatum. Correlation with neuronal injury. Neuroscience113(4),857–869 (2002).
    • 76  Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, Nicoletti F. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-β. J. Neurosci.18(23),9594–9600 (1998).
    • 77  Bruno V, Sureda FX, Storto M et al. The neuroprotective activity of group-2 metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J. Neurosci.17(6),1891–1897 (1997).
    • 78  Matsui T, Kita H. Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus. Neuroscience122(3),727–737 (2003).
    • 79  Valenti O, Marino MJ, Wittmann M et al. Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J. Neurosci.23(18),7218–7226 (2003).
    • 80  Macinnes N, Duty S. Group III metabotropic glutamate receptors act as hetero-receptors modulating evoked GABA release in the globus pallidus in vivo. Eur. J. Pharmacol.580(1–2),95–99 (2008).
    • 81  MacInnes N, Messenger MJ, Duty S. Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. Br. J. Pharmacol.141(1),15–22 (2004).
    • 82  Konieczny J, Wardas J, Kuter K, Pilc A, Ossowska K. The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid on the parkinsonian-like akinesia and striatal proenkephalin and prodynorphin mRNA expression in rats. Neuroscience145(2),611–620 (2007).
    • 83  Wittmann M, Marino MJ, Bradley SR, Conn PJ. Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulate. J. Neurophysiol.85(5),1960–1968 (2001).
    • 84  Lopez S, Turle-Lorenzo N, Acher F, De Leonibus E, Mele A, Amalric M. Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson’s disease. J. Neurosci.27(25),6701–6711 (2007).
    • 85  Sibille P, Lopez S, Brabet I et al. Synthesis and biological evaluation of 1-amino-2-phosphonomethylcyclopropanecarboxylic acids, new group III metabotropic glutamate receptor agonists. J. Med. Chem.50(15),3585–3595 (2007).
    • 86  Marino MJ, Williams DL, O’Brien JA et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. PNAS100(23),13668–13673 (2003).
    • 87  Battaglia G, Busceti CL, Molinaro G et al. Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Neurosci.26(27),7222–7229 (2006).▪ First demonstration that systemically active mGluR4-positive allosteric modulators can be neuroprotective.
    • 88  Cuomo D, Martella G, Barabino E et al. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J. Neurochem.109(4),1096–1105 (2009).
    • 89  Beurrier C, Lopez S, Revy D et al. Electophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J.23(10),3619–3628 (2009).
    • 90  Maj M, Buno V, Dragic Z et al. (-)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology45(7),895–906 (2003).
    • 91  Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov.8(1),41–54 (2009).
    • 92  Niswender CM, Johnson KA, Weaver CD et al. Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol. Pharmacol.74(5),1345–1358 (2008).▪ Shows characterization of novel mGluR4-positive allosteric modulators which are highly selective and are active in animal models of PD.
    • 93  Jones C, Bubser M, Thompson A et al. The mGlu4 positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine A2A antagonist in preclinical rodent models of Parkinson’s disease. J. Pharmacol. Exp. Ther. doi:10.1124/jpet.111.187443 (2011) (Epub ahead of print).
    • 94  Williams R, Johnson KA, Gentry PR et al. Synthesis and SAR of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor 4 (mGluR4). Bioorg. Med. Chem. Lett.19(17),4967–4970 (2009).
    • 95  Lopez S, Turle-Lorenzo N, Johnston TH et al. Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology55(4),483–490 (2008).
    • 96  Greco B, Lopez S, van der Putten H, Flor PJ, Almaric M. Metabotroic glutamate 7 receptor subtype modulates motor symptoms in rodent models of Parkinson’s disease. J. Pharmacol. Exp. Ther.332(3),1064–1071 (2010).
    • 97  Broadstock M, Austin PJ, Betts MJ, Duty S. Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br. J. Pharmacol.165(4b),1034–1045 (2012).
    • 98  Ossowska K, Konieczny J, Wardas J et al. An influence of ligands of metabotropic glutamate receptor subtypes on parkinsonian-like symptoms and the striatopallidal pathway in rats. Amino Acids32(2),179–188 (2007).
    • 99  Valenti O, Marino MJ, Conn PJ. Modulation of excitatory transmission onto midbrain dopaminergic neurons of the rat by activation of group III metabotropic glutamate receptors. Ann. NY Acad. Sci.1003,479–480 (2003).
    • 100  Taylor DL, Diemel LT, Pocock JM. Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J. Neurosci.23(6),2150–2160 (2003).
    • 101  Besong G, Battaglia G, D’Onofrio M et al. Activation of group III metabotropic glutamate receptors inhibits the production of RANTES in glial cell cultures. J. Neurosci.22(13),5403–5411 (2002).
    • 102  Fallarino F, Volpi C, Fazio F et al. Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nat. Med.16(8),897–902 (2010).
    • 103  Vernon AC, Zbarsky V, Datla KP, Dexter DT, Croucher MJ. Selective activation of group III metabotropic glutamate receptors by L-(+)-2-amino-4-phosphonobutryic acid protects the nigrostriatal system against 6-hydroxydopamine toxicity in vivo. J. Pharmacol. Exp. Ther.320(1),397–409 (2007).
    • 104  Vernon AC, Croucher MJ, Dexter DT. Additive neuroprotection by metabotropic glutamate receptor subtype-selective ligands in a rat Parkinson’s model. Neuroreport19(4),475–478 (2008).