We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

CD73–adenosine: a next-generation target in immuno-oncology

    David Allard

    Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada

    Faculté de Pharmacie, Université de Montréal, Québec, Canada

    ,
    Bertrand Allard

    Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada

    Faculté de Pharmacie, Université de Montréal, Québec, Canada

    ,
    Pierre-Olivier Gaudreau

    Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada

    Faculté de Pharmacie, Université de Montréal, Québec, Canada

    ,
    Pavel Chrobak

    Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada

    Faculté de Pharmacie, Université de Montréal, Québec, Canada

    &
    John Stagg

    *Author for correspondence:

    E-mail Address: john.stagg@umontreal.ca

    Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Québec, Canada

    Faculté de Pharmacie, Université de Montréal, Québec, Canada

    Published Online:https://doi.org/10.2217/imt.15.106

    Cancer immunotherapy has entered in a new era with the development of first-generation immune checkpoint inhibitors targeting the PD1/PD-L1 and CTLA-4 pathways. In this context, considerable research effort is being deployed to find the next generation of cancer immunotherapeutics. The CD73–adenosine axis constitutes one of the most promising pathways in immuno-oncology. We and others have demonstrated the immunosuppressive role of CD73–adenosine in cancer and established proof-of-concept that the targeted blockade of CD73 or adenosine receptors could effectively promote anti-tumor immunity and enhance the activity of first-generation immune checkpoint blockers. With Phase I clinical trials now underway evaluating anti-CD73 or anti-A2A therapies in cancer patients, we here discuss the fundamental, preclinical and clinical findings related to the role of the CD73–adenosinergic pathway in tumor immunity.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Carta S, Penco F, Lavieri R et al. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proc. Natl Acad. Sci. USA 112(9), 2835–2840 (2015).
    • 2 Elliott MR, Chekeni FB, Trampont PC et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261), 282–286 (2009).
    • 3 Amoroso F, Falzoni S, Adinolfi E, Ferrari D, Di Virgilio F. The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death Dis. 3, e370 (2012).
    • 4 Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer 13(12), 842–857 (2013).
    • 5 Antonioli L, Pacher P, Vizi ES, Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 19(6), 355–367 (2013).
    • 6 Allard B, Turcotte M, Stagg J. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer. Expert Opin. Ther. Targets 18(8), 863–881 (2014).
    • 7 Maksimow M, Kyhala L, Nieminen A et al. Early prediction of persistent organ failure by soluble CD73 in patients with acute pancreatitis*. Crit. Care Med. 42(12), 2556–2564 (2014).
    • 8 Niemela J, Ifergan I, Yegutkin GG, Jalkanen S, Prat A, Airas L. IFN-beta regulates CD73 and adenosine expression at the blood–brain barrier. Eur. J. Immunol. 38(10), 2718–2726 (2008).
    • 9 Chuang NN, Newby AC, Luzio JP. Characterization of different molecular forms of 5′-nucleotidase in normal serum and in serum from cholestatic patients and bile-duct-ligated rats. Biochem. J. 224(3), 689–695 (1984).
    • 10 Martin-Satue M, Lavoie EG, Fausther M et al. High expression and activity of ecto-5′-nucleotidase/CD73 in the male murine reproductive tract. Histochem. Cell Biol. 133(6), 659–668 (2010).
    • 11 Fini C, Talamo F, Cherri S et al. Biochemical and mass spectrometric characterization of soluble ecto-5′-nucleotidase from bull seminal plasma. Biochem. J. 372(Pt 2), 443–451 (2003).
    • 12 Johnson SM, Patel S, Bruckner FE, Collins DA. 5′-nucleotidase as a marker of both general and local inflammation in rheumatoid arthritis patients. Rheumatology (Oxford) 38(5), 391–396 (1999).
    • 13 Huang JL, Urtatiz O, Van Raamsdonk CD. Oncogenic G protein GNAQ induces uveal melanoma and intravasation in mice. Cancer Res. 75(16), 3384–3397 (2015).
    • 14 Blume C, Felix A, Shushakova N et al. Autoimmunity in CD73/Ecto-5′-nucleotidase deficient mice induces renal injury. PLoS ONE 7(5), e37100 (2012).
    • 15 Castrop H, Huang Y, Hashimoto S et al. Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotidase/CD73-deficient mice. J. Clin. Invest. 114(5), 634–642 (2004).
    • 16 Koszalka P, Ozuyaman B, Huo Y et al. Targeted disruption of cd73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ. Res. 95(8), 814–821 (2004).
    • 17 Lennon PF, Taylor CT, Stahl GL, Colgan SP. Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J. Exp. Med. 188(8), 1433–1443 (1998).
    • 18 Thompson LF, Eltzschig HK, Ibla JC et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200(11), 1395–1405 (2004).
    • 19 Synnestvedt K, Furuta GT, Comerford KM et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110(7), 993–1002 (2002).
    • 20 Algars A, Karikoski M, Yegutkin GG et al. Different role of CD73 in leukocyte trafficking via blood and lymph vessels. Blood 117(16), 4387–4393 (2011).
    • 21 Mills JH, Thompson LF, Mueller C et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 105(27), 9325–9330 (2008).
    • 22 Grenz A, Zhang H, Eckle T et al. Protective role of ecto-5′-nucleotidase (CD73) in renal ischemia. J. Am. Soc. Nephrol. 18(3), 833–845 (2007).
    • 23 Eckle T, Krahn T, Grenz A et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115(12), 1581–1590 (2007).
    • 24 Peng Z, Fernandez P, Wilder T et al. Ecto-5′-nucleotidase (CD73) -mediated extracellular adenosine production plays a critical role in hepatic fibrosis. FASEB J. 22(7), 2263–2272 (2008).
    • 25 Muller G, Jung C, Wied S, Biemer-Daub G, Frick W. Transfer of the glycosylphosphatidylinositol-anchored 5′-nucleotidase CD73 from adiposomes into rat adipocytes stimulates lipid synthesis. Br. J. Pharmacol. 160(4), 878–891 (2010).
    • 26 Hasko G, Pacher P, Vizi ES, Illes P. Adenosine receptor signaling in the brain immune system. Trends Pharmacol. Sci. 26(10), 511–516 (2005).
    • 27 Deaglio S, Dwyer KM, Gao W et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204(6), 1257–1265 (2007). •• First report showing that adenosine produced by the sequential action of CD39 and CD73 is major immunosuppressive mechanism used by Tregs.
    • 28 Stagg J, Divisekera U, Duret H et al. CD73-deficient mice have increased anti-tumor immunity and are resistant to experimental metastasis. Cancer Res. 71(8), 2892–2900 (2011). •• First report showing that host CD73 is involved in anti-tumor immunity.
    • 29 St Hilaire C, Ziegler SG, Markello TC et al. NT5E mutations and arterial calcifications. N. Engl. J. Med. 364(5), 432–442 (2011).
    • 30 Fausther M, Lavoie EG, Goree JR, Baldini G, Dranoff JA. NT5E mutations that cause human disease are associated with intracellular mistrafficking of NT5E protein. PLoS ONE 9(6), e98568 (2014).
    • 31 Li Q, Price TP, Sundberg JP, Uitto J. Juxta-articular joint-capsule mineralization in CD73 deficient mice: similarities to patients with NT5E mutations. Cell cycle (Georgetown, TX) 13(16), 2609–2615 (2014).
    • 32 Hoskin DW, Reynolds T, Blay J. 2-Chloroadenosine inhibits the MHC-unrestricted cytolytic activity of anti-CD3-activated killer cells: evidence for the involvement of a non-A1/A2 cell-surface adenosine receptor. Cell. Immunol. 159(1), 85–93 (1994).
    • 33 Hoskin DW, Reynolds T, Blay J. Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumours. Int. J. Cancer 59(6), 854–855 (1994).
    • 34 Mackenzie WM, Hoskin DW, Blay J. Adenosine inhibits the adhesion of anti-CD3-activated killer lymphocytes to adenocarcinoma cells through an A3 receptor. Cancer Res. 54(13), 3521–3526 (1994).
    • 35 Williams BA, Manzer A, Blay J, Hoskin DW. Adenosine acts through a novel extracellular receptor to inhibit granule exocytosis by natural killer cells. Biochem. Biophys. Res. Commun. 231(2), 264–269 (1997).
    • 36 Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 57(13), 2602–2605 (1997). • First report showing that adenosine levels are elevated in the tumor microenvironment and capable of mediating immunosuppression.
    • 37 Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90(4), 1600–1610 (1997).
    • 38 Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414(6866), 916–920 (2001). •• First report showing the importance of A2A activation for the protection of tissues against against inflammatory reactions.
    • 39 Ohta A, Gorelik E, Prasad SJ et al. A2A adenosine receptor protects tumors from anti-tumor T cells. Proc. Natl Acad. Sci. USA 103(35), 13132–13137 (2006). •• First report showing that a deficiency in host A2A receptors confers resitance to tumor growth in mice.
    • 40 Zhang B. CD73: a novel target for cancer immunotherapy. Cancer Res. 70(16), 6407–6411 (2010).
    • 41 Wang L, Fan J, Thompson LF et al. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J. Clin. Invest. 121(6), 2371–2382 (2011).
    • 42 Stagg J, Divisekera U, Mclaughlin N et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl Acad. Sci. USA 107(4), 1547–1552 (2010). •• First report demonstrating that the targeted blockade of CD73 can reduce tumor growth and metastasis through the activation of anti-tumor immunity.
    • 43 Allard B, Pommey S, Smyth MJ, Stagg J. Targeting CD73 enhances the anti-tumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin. Cancer Res. 19(20), 5626–5635 (2013).
    • 44 Beavis PA, Divisekera U, Paget C et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl Acad. Sci. USA 110(36), 14711–14716 (2013).
    • 45 Mittal D, Young A, Stannard K et al. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 74(14), 3652–3658 (2014).
    • 46 Poth JM, Brodsky K, Ehrentraut H, Grenz A, Eltzschig HK. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. J. Mol. Med. (Berl.) 91(2), 183–193 (2013).
    • 47 Sitkovsky MV, Hatfield S, Abbott R et al. Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol. Res. 2(7), 598–605 (2014).
    • 48 Turcotte M, Spring K, Pommey S et al. CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res. 75(21), 4494–4503 (2015). •• First report showing that CD73 expression correlates with poor prognosis in tha major subtype of ovarian cancer.
    • 49 Leclerc BG, Charlebois R, Chouinard G et al. CD73 expression is an independent prognostic factor in prostate cancer. Clin. Cancer. Res. doi:10.1158/1078-0432.CCR-15-1181 (2015) (Epub ahead of print).
    • 50 Loi S, Pommey S, Haibe-Kains B et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc. Natl Acad. Sci. USA 110(27), 11091–11096 (2013). •• First clinical evidence that CD73 correlates with prognosis and response to therapy in triple-negative breast cancers.
    • 51 Sim GC, Martin-Orozco N, Jin L et al. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J. Clin. Invest. 124(1), 99–110 (2014).
    • 52 Chatterjee S, Thyagarajan K, Kesarwani P et al. Reducing CD73 expression by IL1beta-programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res. 74(21), 6048–6059 (2014).
    • 53 Mandapathil M, Szczepanski MJ, Szajnik M et al. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J. Biol. Chem. 285(36), 27571–27580 (2010).
    • 54 Bellingan G, Maksimow M, Howell DC et al. The effect of intravenous interferon-beta-1a (FP-1201) on lung CD73 expression and on acute respiratory distress syndrome mortality: an open-label study. Lancet Respir. Med. 2(2), 98–107 (2014).
    • 55 Sadej R, Skladanowski AC. Dual, enzymatic and non-enzymatic, function of ecto-5′-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells. Acta Biochim. Pol. 59(4), 647–652 (2012).
    • 56 Allard B, Turcotte M, Spring K et al. Anti-CD73 therapy impairs tumor angiogenesis. Int. J. Cancer 134(6), 1466–1473 (2014).
    • 57 Long JS, Schoonen PM, Graczyk D, O'prey J, Ryan KM. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene 34(40), 5152–5162 (2015).
    • 58 El-Darahali A, Fawcett H, Mader JS, Conrad DM, Hoskin DW. Adenosine-induced apoptosis in EL-4 thymoma cells is caspase-independent and mediated through a non-classical adenosine receptor. Exp. Mol. Pathol. 79(3), 249–258 (2005).
    • 59 Freundlieb M, Zimmermann H, Muller CE. A new, sensitive ecto-5′-nucleotidase assay for compound screening. Anal. Biochem. 446, 53–58 (2014).
    • 60 Dent R, Hanna WM, Trudeau M, Rawlinson E, Sun P, Narod SA. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res. Treat. 115(2), 423–428 (2009).
    • 61 Cancello G, Maisonneuve P, Rotmensz N et al. Prognosis and adjuvant treatment effects in selected breast cancer subtypes of very young women (<35 years) with operable breast cancer. Ann. Oncol. 21(10), 1974–1981 (2010).
    • 62 Wang L, Zhou X, Zhou T et al. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J. Cancer Res. Clin. Oncol. 134(3), 365–372 (2008).
    • 63 Mediavilla-Varela M, Luddy K, Noyes D et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol. Ther. 14(9), 860–868 (2013).
    • 64 Cekic C, Sag D, Day YJ, Linden J. Extracellular adenosine regulates naive T cell development and peripheral maintenance. J. Exp. Med. 210(12), 2693–2706 (2013).
    • 65 Ripphausen P, Freundlieb M, Brunschweiger A, Zimmermann H, Muller CE, Bajorath J. Virtual screening identifies novel sulfonamide inhibitors of ecto-5′-nucleotidase. J. Med. Chem. 55(14), 6576–6581 (2012).
    • 66 Oh HK, Sin JI, Choi J, Park SH, Lee TS, Choi YS. Overexpression of CD73 in epithelial ovarian carcinoma is associated with better prognosis, lower stage, better differentiation and lower regulatory T cell infiltration. J. Gynecol. Oncol. 23(4), 274–281 (2012).
    • 67 Bhattarai S, Freundlieb M, Pippel J et al. Alpha, beta-methylene-ADP (AOPCP) derivatives and analogues: development of potent and selective ecto-5′-nucleotidase (CD73) inhibitors. J. Med. Chem. 58(15), 6248–6263 (2015).
    • 68 Baqi Y, Lee SY, Iqbal J et al. Development of potent and selective inhibitors of ecto-5′-nucleotidase based on an anthraquinone scaffold. J. Med. Chem. 53(5), 2076–2086 (2010).
    • 69 Iqbal J, Saeed A, Raza R et al. Identification of sulfonic acids as efficient ecto-5′-nucleotidase inhibitors. Eur. J. Med. Chem. 70, 685–691 (2013).
    • 70 Braganhol E, Tamajusuku AS, Bernardi A, Wink MR, Battastini AM. Ecto-5′-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim. Biophys. Acta 1770(9), 1352–1359 (2007).
    • 71 Thomson LF, Ruedi JM, Glass A et al. Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5′-nucleotidase (CD73). Tissue Antigens 35(1), 9–19 (1990).
    • 72 Stagg J, Allard B. Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects. Ther. Adv. Med. Oncol. 5(3), 169–181 (2013).
    • 73 Dent R, Trudeau M, Pritchard KI et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer. Res. 13(15 Pt 1), 4429–4434 (2007).
    • 74 Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109(9), 1721–1728 (2007).
    • 75 Anders CK, Deal AM, Miller CR et al. The prognostic contribution of clinical breast cancer subtype, age, and race among patients with breast cancer brain metastases. Cancer 117(8), 1602–1611 (2011).
    • 76 Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 406(6797), 747–752 (2000).
    • 77 Nielsen TO, Hsu FD, Jensen K et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10(16), 5367–5374 (2004).
    • 78 Carey LA, Perou CM, Livasy CA et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21), 2492–2502 (2006).
    • 79 Liedtke C, Mazouni C, Hess KR et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26(8), 1275–1281 (2008).
    • 80 O'Toole SA, Beith JM, Millar EK et al. Therapeutic targets in triple negative breast cancer. J. Clin. Pathol. 66(6), 530–542 (2013).
    • 81 Rust S, Guillard S, Sachsenmeier K et al. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type. Mol. Cancer 12, 11 (2013).
    • 82 Terp MG, Olesen KA, Arnspang EC et al. Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells. J. Immunol. 191(8), 4165–4173 (2013).
    • 83 Spychala J, Lazarowski E, Ostapkowicz A, Ayscue LH, Jin A, Mitchell BS. Role of estrogen receptor in the regulation of ecto-5′-nucleotidase and adenosine in breast cancer. Clin. Cancer Res. 10(2), 708–717 (2004).
    • 84 Zhi X, Chen S, Zhou P et al. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin. Exp. Metastasis 24(6), 439–448 (2007).
    • 85 Zhi X, Wang Y, Zhou X et al. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci. 101(12), 2561–2569 (2010).
    • 86 Zhou X, Zhi X, Zhou P et al. Effects of ecto-5′-nucleotidase on human breast cancer cell growth in vitro and in vivo. Oncol. Rep. 17(6), 1341–1346 (2007).
    • 87 Zhou JZ, Riquelme MA, Gao X et al. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene 34(14), 1831–1842 (2015).
    • 88 Virtanen SS, Kukkonen-Macchi A, Vainio M et al. Adenosine inhibits tumor cell invasion via receptor-independent mechanisms. Mol. Cancer Res. 12(12), 1863–1874 (2014).
    • 89 Wang L, Tang S, Wang Y et al. Ecto-5′-nucleotidase (CD73) promotes tumor angiogenesis. Clin. Exp. Metastasis 30(5), 671–680 (2013).
    • 90 Desmet CJ, Gallenne T, Prieur A et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc. Natl. Acad. Sci. USA 110(13), 5139–5144 (2013).
    • 91 Cekic C, Sag D, Li Y, Theodorescu D, Strieter RM, Linden J. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 188(1), 198–205 (2012).
    • 92 Ntantie E, Gonyo P, Lorimer EL et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci. Signal. 6(277), ra39 (2013).
    • 93 Coustan-Smith E, Song G, Clark C et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 117(23), 6267–6276 (2011).
    • 94 Serra S, Horenstein AL, Vaisitti T et al. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 118(23), 6141–6152 (2011).
    • 95 Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R. Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk. Lymphoma 54(11), 2351–2364 (2013).
    • 96 Lad DP, Varma S, Varma N et al. Regulatory T-cells in B-cell chronic lymphocytic leukemia: their role in disease progression and autoimmune cytopenias. Leuk. Lymphoma 54(5), 1012–1019 (2013).
    • 97 Abousamra NK, Salah El-Din M, Hamza Elzahaf E, Esmael ME. Ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1/CD39) as a new prognostic marker in chronic lymphocytic leukemia. Leuk. Lymphoma 56(1), 113–119 (2015).
    • 98 Bavaresco L, Bernardi A, Braganhol E et al. The role of ecto-5′-nucleotidase/CD73 in glioma cell line proliferation. Mol. Cell. Biochem. 319(1–2), 61–68 (2008).
    • 99 Xu S, Shao QQ, Sun JT et al. Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro Oncol. 15(9), 1160–1172 (2013).
    • 100 Quezada C, Garrido W, Oyarzun C et al. 5′-ectonucleotidase mediates multiple-drug resistance in glioblastoma multiforme cells. J. Cell. Physiol. 228(3), 602–608 (2013).
    • 101 Tso CL, Shintaku P, Chen J et al. Primary glioblastomas express mesenchymal stem-like properties. Mol. Cancer Res. 4(9), 607–619 (2006).
    • 102 Liu TZ, Wang X, Bai YF et al. The HIF-2alpha dependent induction of PAP and adenosine synthesis regulates glioblastoma stem cell function through the A2B adenosine receptor. Int. J. Biochem. Cell Biol. 49, 8–16 (2014).
    • 103 Daniele S, Zappelli E, Natali L, Martini C, Trincavelli ML. Modulation of A1 and A2B adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy. Cell Death Dis. 5, e1539 (2014).
    • 104 Synowitz M, Glass R, Farber K et al. A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res. 66(17), 8550–8557 (2006).
    • 105 Bynoe MS, Viret C, Yan A, Kim DG. Adenosine receptor signaling: a key to opening the blood–brain door. Fluids Barriers CNS 12(1), 20 (2015).
    • 106 Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS. Adenosine receptor signaling modulates permeability of the blood–brain barrier. J. Neurosci. 31(37), 13272–13280 (2011).
    • 107 Chen GQ, Chen YY, Wang XS et al. Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Res. 1309, 116–125 (2010).
    • 108 Tsutsui S, Schnermann J, Noorbakhsh F et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J. Neurosci. 24(6), 1521–1529 (2004).
    • 109 Mills JH, Alabanza LM, Mahamed DA, Bynoe MS. Extracellular adenosine signaling induces CX3CL1 expression in the brain to promote experimental autoimmune encephalomyelitis. J. Neuroinflammation 9, 193 (2012).
    • 110 Shechter R, Miller O, Yovel G et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38(3), 555–569 (2013).
    • 111 Mills JH, Alabanza L, Weksler BB et al. Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic Signal. 7(2), 265–273 (2011).
    • 112 Kim DG, Bynoe MS. A2A adenosine receptor regulates the human blood–brain barrier permeability. Mol. Neurobiol. 52(1), 664–678 (2015).
    • 113 Petrovic-Djergovic D, Hyman MC, Ray JJ et al. Tissue-resident ecto-5′ nucleotidase (CD73) regulates leukocyte trafficking in the ischemic brain. J. Immunol. 188(5), 2387–2398 (2012).
    • 114 Yao SQ, Li ZZ, Huang QY et al. Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. J. Neurochem. 123(1), 100–112 (2012).
    • 115 Stagg J, Loi S, Divisekera U et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc. Natl Acad. Sci. USA 108(17), 7142–7147 (2011).
    • 116 Stagg J, Beavis PA, Divisekera U et al. CD73-deficient mice are resistant to carcinogenesis. Cancer Res. 72(9), 2190–2196 (2012).
    • 117 Cekic C, Day YJ, Sag D, Linden J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 74(24), 7250–7259 (2014).
    • 118 Hatfield SM, Kjaergaard J, Lukashev D et al. Immunological mechanisms of the anti-tumor effects of supplemental oxygenation. Sci. Transl. Med. 7(277), 277ra230 (2015).
    • 119 Ryzhov S, Novitskiy SV, Zaynagetdinov R et al. Host A(2B) adenosine receptors promote carcinoma growth. Neoplasia 10(9), 987–995 (2008).
    • 120 Sunaga N, Shames DS, Girard L et al. Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy. Mol. Cancer Ther. 10(2), 336–346 (2011).
    • 121 Lievre A, Bachet JB, Le Corre D et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66(8), 3992–3995 (2006).
    • 122 Algars A, Lintunen M, Carpen O, Ristamaki R, Sundstrom J. EGFR gene copy number assessment from areas with highest EGFR expression predicts response to anti-EGFR therapy in colorectal cancer. Br. J. Cancer 105(2), 255–262 (2011).
    • 123 Khambata-Ford S, Garrett CR, Meropol NJ et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25(22), 3230–3237 (2007).
    • 124 Rao S, Yang H, Penninger JM, Kroemer G. Autophagy in non-small cell lung carcinogenesis: a positive regulator of anti-tumor immunosurveillance. Autophagy 10(3), 529–531 (2014).
    • 125 Sadej R, Spychala J, Skladanowski AC. Expression of ecto-5′-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Res. 16(3), 213–222 (2006).
    • 126 Sadej R, Spychala J, Skladanowski AC. Ecto-5′-nucleotidase (eN, CD73) is coexpressed with metastasis promoting antigens in human melanoma cells. Nucleosides Nucleotides Nucleic Acids 25(9–11), 1119–1123 (2006).
    • 127 Wang H, Lee S, Nigro CL et al. NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity. Br. J. Cancer 106(8), 1446–1452 (2012).
    • 128 Yegutkin GG, Marttila-Ichihara F, Karikoski M et al. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur. J. Immunol. 41(5), 1231–1241 (2011).
    • 129 Burghoff S, Gong X, Viethen C et al. Growth and metastasis of B16-F10 melanoma cells is not critically dependent on host CD73 expression in mice. BMC Cancer 14, 898 (2014).
    • 130 Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am. J. Cancer Res. 4(2), 172–181 (2014).
    • 131 Koszalka P, Pryszlak A, Golunska M et al. Inhibition of CD73 stimulates the migration and invasion of B16F10 melanoma cells in vitro but results in impaired angiogenesis and reduced melanoma growth in vivo. Oncol. Rep. 31(2), 819–827 (2014).
    • 132 Waickman AT, Alme A, Senaldi L, Zarek PE, Horton M, Powell JD. Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol. Immunother. 61(6), 917–926 (2012).
    • 133 Forte G, Sorrentino R, Montinaro A et al. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J. Immunol. 189(5), 2226–2233 (2012).
    • 134 Kaji W, Tanaka S, Tsukimoto M, Kojima S. Adenosine A(2B) receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells. J. Toxicol. Sci. 39(2), 191–198 (2014).
    • 135 Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15(12), 1400–1409 (2013).
    • 136 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin. 59(4), 225–249 (2009).
    • 137 Hamanishi J, Mandai M, Ikeda T et al. Safety and anti-tumor activity of anti-PD-1 antibody, Nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33(34), 4015–4022 (2015).
    • 138 Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 73(12), 3591–3603 (2013).
    • 139 Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in anti-tumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210(7), 1389–1402 (2013).
    • 140 Jin D, Fan J, Wang L et al. CD73 on tumor cells impairs anti-tumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 70(6), 2245–2255 (2010).
    • 141 Bignotti E, Tassi RA, Calza S et al. Gene expression profile of ovarian serous papillary carcinomas: identification of metastasis-associated genes. Am. J. Obstet. Gynecol. 196(3), 245.e241–245.e211 (2007).
    • 142 Govindaraj C, Scalzo-Inguanti K, Madondo M et al. Impaired Th1 immunity in ovarian cancer patients is mediated by TNFR2+ Tregs within the tumor microenvironment. Clin. Immunol. 149(1), 97–110 (2013).
    • 143 Hausler SF, Montalban Del Barrio I, Strohschein J et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol. Immunother. 60(10), 1405–1418 (2011).
    • 144 Hausler SF, Del Barrio IM, Diessner J et al. Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am. J. Transl. Res. 6(2), 129–139 (2014).
    • 145 Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer 49(6), 1374–1403 (2013).
    • 146 Sanda MG, Dunn RL, Michalski J et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N. Engl. J. Med. 358(12), 1250–1261 (2008).
    • 147 Higano CS, Schellhammer PF, Small EJ et al. Integrated data from 2 randomized, double-blind, placebo-controlled, Phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115(16), 3670–3679 (2009).
    • 148 Kantoff PW, Schuetz TJ, Blumenstein BA et al. Overall survival analysis of a Phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28(7), 1099–1105 (2010).
    • 149 Small EJ, Schellhammer PF, Higano CS et al. Placebo-controlled Phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24(19), 3089–3094 (2006).
    • 150 Yang Q, Du J, Zu L. Overexpression of CD73 in prostate cancer is associated with lymph node metastasis. Pathol. Oncol. Res. 19(4), 811–814 (2013).
    • 151 Mousavi S, Panjehpour M, Izadpanahi MH, Aghaei M. Expression of adenosine receptor subclasses in malignant and adjacent normal human prostate tissues. Prostate 75(7), 735–747 (2015).
    • 152 Peyot ML, Gadeau AP, Dandre F, Belloc I, Dupuch F, Desgranges C. Extracellular adenosine induces apoptosis of human arterial smooth muscle cells via A(2b)-purinoceptor. Circ. Res. 86(1), 76–85 (2000).
    • 153 Hajiahmadi S, Panjehpour M, Aghaei M, Shabani M. Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3. Biochem. Cell Biol. 93(4), 321–329 (2015).
    • 154 Long JS, Crighton D, O'prey J et al. Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53. Mol. Cell 50(3), 394–406 (2013).
    • 155 Hay C, Sult E, Huang Q et al. MEDI9447: enhancing anti-tumor immunity by targeting CD73 in the tumor microenviroment. Presented at: 106th Annual Meeting of the American Association for Cancer Research. Philadelphia, PA, USA, 18–22 April 2015.
    • 156 Zhi X, Wang Y, Yu J et al. Potential prognostic biomarker CD73 regulates epidermal growth factor receptor expression in human breast cancer. IUBMB Life 64(11), 911–920 (2012).
    • 157 Supernat A, Markiewicz A, Welnicka-Jaskiewicz M et al. CD73 expression as a potential marker of good prognosis in breast carcinoma. Appl. Immunohistochem. Mol. Morphol. 20(2), 103–107 (2012).
    • 158 Lo Nigro C, Monteverde M, Lee S et al. NT5E CpG island methylation is a favourable breast cancer biomarker. Br. J. Cancer 107(1), 75–83 (2012).
    • 159 Yang Q, Du J, Zu L. Overexpression of CD73 in prostate cancer is associated with lymph node metastasis. Pathol. Oncol. Res. 19(4), 811–814 (2013).
    • 160 Zhang B, Song B, Wang X et al. The expression and clinical significance of CD73 molecule in human rectal adenocarcinoma. Tumour Biol. 36(7), 5459–5466 (2015).
    • 161 Wu XR, He XS, Chen YF et al. High expression of CD73 as a poor prognostic biomarker in human colorectal cancer. J. Surg. Oncol. 106(2), 130–137 (2012).
    • 162 Xiong L, Wen Y, Miao X, Yang Z. NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer. Cell Tissue Res. 355(2), 365–374 (2014).
    • 163 Lu XX, Chen YT, Feng B, Mao XB, Yu B, Chu XY. Expression and clinical significance of CD73 and hypoxia-inducible factor-1alpha in gastric carcinoma. World J. Gastroenterol. 19(12), 1912–1918 (2013).
    • 164 Yu YI, Wang W, Song L et al. Ecto-5′-nucleotidase expression is associated with the progression of renal cell carcinoma. Oncol. Lett. 9(6), 2485–2494 (2015).
    • 165 Wettstein MS, Buser L, Hermanns T et al. CD73 predicts favorable prognosis in patients with nonmuscle-invasive urothelial bladder cancer. Disease Marker 2015(1), 1–8 (2015).