We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An update on the use of immunoglobulin for the treatment of immunodeficiency disorders

    Stephanie Albin

    Division of Allergy & Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

    &
    Charlotte Cunningham-Rundles

    Division of Allergy & Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

    Published Online:https://doi.org/10.2217/imt.14.67

    For patients with significant antibody deficiencies, immunoglobulin therapy is the mainstay of treatment as it significantly reduces both the frequency and severity of infections. The formulations and delivery methods of immunoglobulin have evolved over time, and continued improvements have allowed for increased access to this effective medication. This review is an update on the current status of immunoglobulin therapy in immunodeficiency disorders, and discusses the mechanisms, forms and dosing, and indications for immunoglobulin replacement.

    Papers of special note have been highlighted as: • of interest.

    References

    • 1 Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat. Rev. Immunol. 13(3), 176–189 (2013).
    • 2 Sandomenico A, Severino V, Chambery A et al. A comparative structural and bioanalytical study of IVIG clinical lots. Mol. Biotechnol. 54 (3), 983–995 (2013).
    • 3 Siegel J. The product: all intravenous immunoglobulins are not equivalent. Pharmacotherapy 25(11 Pt 2), 78S–84S (2005).
    • 4 Dhainaut F, Guillaumat PO, Dib H et al. In vitro and in vivo properties differ among liquid intravenous immunoglobulin preparations. Vox Sang. 104(2), 115–126 (2013).
    • 5 Munro CS, Stanley PJ, Cole PJ. Assessment of biological activity of immunoglobulin preparations by using opsonized micro-organisms to stimulate neutrophil chemiluminescence. Clin. Exp. Immunol. 61(1), 183–188 (1985).
    • 6 Dwyer JM. Manipulating the immune system with immune globulin. N. Engl. J. Med. 326(2), 107–116 (1992).
    • 7 Kime C, Klima J, Rose MJ, O'Brien SH. Patterns of inpatient care for newly diagnosed immune thrombocytopenia in US children's hospitals. Pediatrics 131(5), 880–885 (2013).
    • 8 Neunert C, Lim W, Crowther M et al. The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia. Blood 117(16), 4190–4207 (2011).
    • 9 Melzer N, Meuth SG. Disease-modifying therapy in multiple sclerosis and chronic inflammatory demyelinating polyradiculoneuropathy: common and divergent current and future strategies. Clin. Exp. Immunol. 175(3), 359–372 (2014).
    • 10 Patwa HS, Chaudhry V, Katzberg H, Rae-Grant AD, So YT. Evidence-based guideline: intravenous immunoglobulin in the treatment of neuromuscular disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 78(13), 1009–1015 (2012).
    • 11 Al-Herz W, Bousfiha A, Casanova JL et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 5(162), 1–33 (2014).
    • 12 Debost-Legrand A, Legrand G, Moulillot G et al. A new mutation that predicted a drastic alteration of the BTK protein function. Gene 527(1), 426–428 (2013).
    • 13 Winkelstein JA, Marino MC, Lederman HM et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore) 85(4), 193–202 (2006).
    • 14 Fried AJ, Bonilla FA. Pathogenesis, diagnosis, and management of primary antibody deficiencies and infections. Clin. Microbiol. Rev. 22(3), 396–414 (2009).
    • 15 Conley ME, Howard V. Clinical findings leading to the diagnosis of X-linked agammaglobulinemia. J. Pediatr. 141(4), 566–571 (2002).
    • 16 Conley ME, Rohrer J, Minegishi Y. X-linked agammaglobulinemia. Clin. Rev. Allergy Immunol. 19(2), 183–204 (2000).
    • 17 Asmar BI, Andresen J, Brown WJ. Ureaplasma urealyticum arthritis and bacteremia in agammaglobulinemia. Pediatr. Infect. Dis. J. 17(1), 73–76 (1998).
    • 18 Katamura K, Hattori H, Kunishima T, Kanegane H, Miyawaki T, Nakahata T. Non-progressive viral myelitis in X-linked agammaglobulinemia. Brain Dev. 24(2), 109–111 (2002).
    • 19 Howard V, Greene JM, Pahwa S et al. The health status and quality of life of adults with X-linked agammaglobulinemia. Clin. Immunol. 118(2–3), 201–208 (2006).
    • 20 Buckley CR. Agammaglobulinemia, by Col. Ogden C. Bruton, MC, USA, Pediatrics, 1952;9:722-728. Pediatrics 102(1 Pt 2), 213–215 (1998).• Expert commentary on a seminal article that reported the very first described human host defect.
    • 21 Bonilla FA, Bernstein IL, Khan DA et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann. Allergy Asthma Immunol. 94(5 Suppl. 1), S1–S63 (2005).• Most expert and comprehensive guide for clinical recognition and treatment of primary immunodeficiencies.
    • 22 Okocha IU, Hanson CG, Chinen J, Shearer WT. Decline of antibodies in XLA infant: when to start IVIG. Allergy 66(3), 434–435 (2011).
    • 23 Quartier P, Debré M, De Blic J et al. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J. Pediatr. 134(5), 589–596 (1999).
    • 24 Misbah SA, Spickett GP, Ryba PC et al. Chronic enteroviral meningoencephalitis in agammaglobulinemia: case report and literature review. J. Clin. Immunol. 12(4), 266–270 (1992).
    • 25 Marashi SM, Raeiszadeh M, Enright V et al. Influence of cytomegalovirus infection on immune cell phenotypes in patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 129(5), 1349–1356 (2012).
    • 26 van de Ven AA, Compeer EB, van Montfrans JM, Boes M. B-cell defects in common variable immunodeficiency: BCR signaling, protein clustering and hardwired gene mutations. Crit. Rev. Immunol. 31(2), 85–98 (2011).
    • 27 Cunningham-Rundles C, Maglione PJ. Common variable immunodeficiency. J. Allergy Clin. Immunol. 129(5), 1425–1426 (2012).
    • 28 Cunningham-Rundles C. How I treat common variable immune deficiency. Blood 116(1), 7–15 (2010).
    • 29 Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin. Immunol. 92(1), 34–48 (1999).
    • 30 Busse PJ, Razvi S, Cunningham-Rundles C. Efficacy of intravenous immunoglobulin in the prevention of pneumonia in patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 109(6), 1001–1004 (2002).
    • 31 Chapel H, Cunningham-Rundles C. Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. Br. J. Haematol. 145(6), 709–727 (2009).
    • 32 de Gracia J, Vendrell M, Alvarez A et al. Immunoglobulin therapy to control lung damage in patients with common variable immunodeficiency. Int. Immunopharmacol. 4(6), 745–753 (2004).
    • 33 Orange JS, Hossny EM, Weiler CR et al. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J. Allergy Clin. Immunol. 117(4 Suppl.), S525–S553 (2006).• Thorough review evaluating the evidence underlying a wide variety of IVIG uses.
    • 34 Migone N, Oliviero S, de Lange G et al. Multiple gene deletions within the human immunoglobulin heavy-chain cluster. Proc. Natl Acad. Sci. USA 81(18), 5811–5815 (1984).
    • 35 Immune Deficiency Foundation. IgG subclass deficiency. www.primaryimmune.org/about-primary-immunodeficiencies/specific-disease-types/igg-subclass-deficiency
    • 36 Javier FC 3rd, Moore CM, Sorensen RU. Distribution of primary immunodeficiency diseases diagnosed in a pediatric tertiary hospital. Ann. Allergy Asthma Immunol. 84(1), 25–30 (2000).
    • 37 Hanson LA, Söderström R, Avanzini A, Bengtsson U, Björkander J, Söderström T. Immunoglobulin subclass deficiency. Pediatr. Infect. Dis. J. 7(5 Suppl.), S17–S21 (1988).
    • 38 Siber GR, Schur PH, Aisenberg AC, Weitzman SA, Schiffman G. Correlation between serum IgG-2 concentrations and the antibody response to bacterial polysaccharide antigens. N. Engl. J. Med. 303(4), 178–182 (1980).
    • 39 de Moraes Lui C, Oliveira LC, Diogo CL, Kirschfink M, Grumach AS. Immunoglobulin G subclass concentrations and infections in children and adolescents with severe asthma. Pediatr. Allergy Immunol. 13(3), 195–202 (2002).
    • 40 Gelfand EW, Ochs HD, Shearer WT. Controversies in IgG replacement therapy in patients with antibody deficiency diseases. J. Allergy Clin. Immunol. 131(4), 1001–1005 (2013).
    • 41 Hanson LA, Söderström R, Nilssen DE et al. IgG subclass deficiency with or without IgA deficiency. Clin. Immunol Immunopathol. 61(2 Pt 2), S70–S77 (1991).
    • 42 Friman V, Hahn-Zoric M, Björkander J, Oxelius VA, Hanson LA. Aberrant IgG2 antibody response to Neisseria meningitidis polysaccharide A after vaccination in frequently infected compared to healthy IgA-deficient individuals. Scand. J. Immunol. 60(3), 292–298 (2004).
    • 43 Abdou NI, Greenwell CA, Mehta R, Narra M, Hester JD, Halsey JF. Efficacy of intravenous gammaglobulin for immunoglobulin G subclass and/or antibody deficiency in adults. Int. Arch. Allergy Immunol. 149(3), 267–274 (2009).
    • 44 Ambrosino DM, Siber GR, Chilmonczyk BA, Jernberg JB, Finberg RW. An immunodeficiency characterized by impaired antibody responses to polysaccharides. N. Engl. J. Med. 316(13), 790–793 (1987).
    • 45 Borgers H, Moens L, Picard C et al. Laboratory diagnosis of specific antibody deficiency to pneumococcal capsular polysaccharide antigens by multiplexed bead assay. Clin. Immunol. 134(2), 198–205 (2010).
    • 46 Orange JS, Ballow M, Stiehm ER et al. Use and interpretation of diagnostic vaccination in primary immunodeficiency: a working group report of the Basic and Clinical Immunology Interest Section of the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 130(3 Suppl.), S1–24 (2012).• Expert recommendations on the utility of vaccination as a diagnostic tool.
    • 47 Ruuskanen O, Nurkka A, Helminen M, Viljanen MK, Käyhty H, Kainulainen L. Specific antibody deficiency in children with recurrent respiratory infections: a controlled study with follow-up. Clin. Exp. Immunol. 172(2), 238–244 (2013).
    • 48 Sorensen RU, Harvey T, Leiva, LE. Selective antibody deficiency with normal immunoglobulins. In: Immunodeficiency. Metodiev K (Ed.), InTech Publishers, Rijeka, Croatia, 191–206 (2012).
    • 49 Sorensen RU, Leiva LE, Javier FC 3rd et al. Influence of age on the response to Streptococcus pneumoniae vaccine in patients with recurrent infections and normal immunoglobulin concentrations. J. Allergy Clin. Immunol. 102(2), 215–221 (1998).
    • 50 Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J. Clin. Immunol. 21(5), 303–309 (2001).
    • 51 Yel L. Selective IgA deficiency. J. Clin. Immunol. 30(1), 10–16 (2010).
    • 52 Burks AW, Sampson HA, Buckley RH. Anaphylactic reactions after gamma globulin administration in patients with hypogammaglobulinemia. Detection of IgE antibodies to IgA. N. Engl. J. Med. 314(9), 560–564 (1986).
    • 53 Laschinger C, Shepherd FA, Naylor DH. Anti-IgA-mediated transfusion reactions in Canada. Can. Med. Assoc. J. 130(2), 141–144 (1984).
    • 54 Notarangelo LD, Duse M, Ugazio AG. Immunodeficiency with hyper-IgM (HIM). Immunodefic. Rev. 3(2), 101–121 (1992).
    • 55 Qamar N, Fuleihan RL. The hyper IgM syndromes. Clin. Rev. Allergy Immunol. 46(2), 120–130 (2013).
    • 56 Winkelstein JA, Marino MC, Ochs H et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore) 82(6), 373–384 (2003).
    • 57 Levy J, Espanol-Boren T, Thomas C et al. Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr. 131(1 Pt 1), 47–54 (1997).
    • 58 Quartier P, Bustamante J, Sanal O et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin. Immunol. 110(1), 22–29 (2004).
    • 59 Gennery AR, Khawaja K, Veys P et al. Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation: a survey of the European experience, 1993–2002. Blood 103(3), 1152–1157 (2004).
    • 60 Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J. Pediatr. 125(6 Pt 1), 876–885 (1994).
    • 61 Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann. NY Acad. Sci. 1285, 26–43 (2013).
    • 62 Villa A, Notarangelo L, Macchi P et al. X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat. Genet. 9(4), 414–417 (1995).
    • 63 Puck JM, Candotti F. Lessons from the Wiskott-Aldrich syndrome. N. Engl. J. Med. 355(17), 1759–1761 (2006).
    • 64 Ochs HD, Filipovich AH, Veys P, Cowan MJ, Kapoor N. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol. Blood Marrow Transplant. 15(1 Suppl.), 84–90 (2009).
    • 65 Conley ME, Saragoussi D, Notarangelo L et al. An international study examining therapeutic options used in treatment of Wiskott-Aldrich syndrome. Clin. Immunol. 109(3), 272–277 (2003).
    • 66 Litzman, J, Jones A, Hann I, Chapel H, Strobel S, Morgan G. Intravenous immunoglobulin, splenectomy, and antibiotic prophylaxis in Wiskott-Aldrich syndrome. Arch Dis. Child. 75(5), 436–439 (1996).
    • 67 Dvorak CC, Cowan MJ, Logan BR et al. The natural history of children with severe combined immunodeficiency: baseline features of the first fifty patients of the primary immune deficiency treatment consortium prospective study 6901. J. Clin. Immunol. 33(7), 1156–1164 (2013).
    • 68 Al-Herz W, Bousfiha A, Casanova JL et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 2, 54 (2011).
    • 69 Notarangelo LD. Combined immunodeficiencies with nonfunctional T lymphocytes. Adv. Immunol. 121, 121–190 (2014).
    • 70 Gaspar HB, Qasim W, Davies EG, Rao K, Amrolia PJ, Veys P. How I treat severe combined immunodeficiency. Blood 122(23), 3749–3758 (2013).
    • 71 Aloj G, Giardino G, Valentino L et al. Severe combined immunodeficiences: new and old scenarios. Int. Rev. Immunol. 31(1), 43–65 (2012).
    • 72 Verbsky JW, Baker MW, Grossman WJ et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008–2011). J. Clin. Immunol. 32(1), 82–88 (2012).
    • 73 Felgentreff K, Perez-Becker R, Speckmann C et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin. Immunol. 141(1), 73–82 (2011).
    • 74 Brown L, Xu-Bayford J, Allwood Z et al. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood 117(11), 3243–3246 (2011).
    • 75 Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood 99(3), 872–878 (2002).
    • 76 Buckley RH. Advances in the understanding and treatment of human severe combined immunodeficiency. Immunol. Res. 22(2–3), 237–251 (2000).
    • 77 Patel K, Akhter J, Kobrynski L, Benjamin Gathmann MA, Davis O, Sullivan KE. International DiGeorge Syndrome Immunodeficiency Consortium. Immunoglobulin deficiencies: the B-lymphocyte side of DiGeorge syndrome. J. Pediatr. 161(5), 950–953 (2012).
    • 78 Memmedova L, Azarsiz E, Edeer Karaca N, Aksu G, Kutukculer N. Does intravenous immunoglobulin therapy prolong immunodeficiency in transient hypogammaglobulinemia of infancy? Pediatr. Rep. 5(3), e14 (2013).
    • 79 Desjardins M, Mazer BD. B-cell memory and primary immune deficiencies: interleukin-21 related defects. Curr. Opin. Allergy Clin. Immunol. 13(6), 639–645 (2013).
    • 80 Torgerson TR. Overview of routes of IgG administration. J. Clin. Immunol. 33(Suppl. 2), S87–S89 (2013).
    • 81 Immune Deficiency Foundation. Immunoglobulin products. www.primaryimmune.org/treatment-information/immunoglobulin-products/
    • 82 Chapel HM, Spickett GP, Ericson D, Engl W, Eibl MM, Bjorkander J. The comparison of the efficacy and safety of intravenous versus subcutaneous immunoglobulin replacement therapy. J. Clin. Immunol. 20(2), 94–100 (2000).• An international, multicenter, open label, crossover study where patients were randomized to receive either subcutaneous or intravenous immunoglobulin replacement therapy for 1 year.
    • 83 Shapiro RS. Why I use subcutaneous immunoglobulin (SCIG). J. Clin. Immunol. 33 (Suppl. 2), S95–S98 (2013).
    • 84 Abolhassani H, Sadaghiani MS, Aghamohammadi A, Ochs HD, Rezaei N. Home-based subcutaneous immunoglobulin versus hospital-based intravenous immunoglobulin in treatment of primary antibody deficiencies: systematic review and meta analysis. J. Clin. Immunol. 32(6), 1180–1192 (2012).
    • 85 Berger M. Choices in IgG replacement therapy for primary immune deficiency diseases: subcutaneous IgG vs. intravenous IgG and selecting an optimal dose. Curr. Opin. Allergy Clin. Immunol. 11(6), 532–538 (2011).
    • 86 Roifman CM, Berger M, Notarangelo LD. Management of primary antibody deficiency with replacement therapy: summary of guidelines. Immunol. Allergy Clin. North Am. 28(4), 875–876 (2008).
    • 87 Eijkhout HW, van Der Meer JW, Kallenberg CG et al. The effect of two different dosages of intravenous immunoglobulin on the incidence of recurrent infections in patients with primary hypogammaglobulinemia. A randomized, double-blind, multicenter crossover trial. Ann. Intern. Med. 135(3), 165–174 (2001).
    • 88 Lucas M, Lee M, Lortan J, Lopez-Granados E, Misbah S, Chapel H. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J. Allergy Clin. Immunol. 125(6), 1354–1360 (2010).• A prospective study that provided guidance regarding optimal doses and target trough IgG levels in individual patients with common variable immunodeficiency.
    • 89 Bonagura VR, Marchlewski R, Cox A, Rosenthal DW. Biologic IgG level in primary immunodeficiency disease: the IgG level that protects against recurrent infection. J. Allergy Clin. Immunol. 122(1), 210–212 (2008).
    • 90 Pruzanski W, Sussman G, Dorian W, Van T, Ibanez D, Redelmeier D. Relationship of the dose of intravenous gammaglobulin to the prevention of infections in adults with common variable immunodeficiency. Inflammation 20(4), 353–359 (1996).
    • 91 Pettit SJ, Bourne H, Spickett GP. Survey of infection in patients receiving antibody replacement treatment for immune deficiency. J. Clin. Pathol. 55(8), 577–580 (2002).
    • 92 Wasserman RL, Melamed I, Stein MR et al. Recombinant human hyaluronidase-facilitated subcutaneous infusion of human immunoglobulins for primary immunodeficiency. J. Allergy Clin. Immunol. 130(4), 951–957 (2012).
    • 93 Giragossian C, Clark T, Piché-Nicholas N, Bowman CJ. Neonatal Fc receptor and its role in the absorption, distribution, metabolism and excretion of immunoglobulin G-based biotherapeutics. Curr. Drug Metab. 14(7), 764–790 (2013).