We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Oncolytic viruses in lung cancer treatment: a review article

    Hanie Sakhi

    Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran

    ,
    Mohadeseh Arabi

    Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran

    ,
    Amir Ghaemi

    Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran

    ,
    Abolfazl Movafagh

    Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran

    &
    Mojgan Sheikhpour

    *Author for correspondence: Tel.: +98 912 296 9712;

    E-mail Address: mshaikhpoor@gmail.com

    Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran

    Published Online:https://doi.org/10.2217/imt-2023-0124

    Lung cancer has a high morbidity rate worldwide due to its resistance to therapy. So new treatment options are needed to improve the outcomes of lung cancer treatment. This study aimed to evaluate the effectiveness of oncolytic viruses (OVs) as a new type of cancer treatment. In this study, 158 articles from PubMed and Scopus from 1994 to 2022 were reviewed on the effectiveness of OVs in the treatment of lung cancer. The oncolytic properties of eight categories of OVs and their interactions with treatment options were investigated. OVs can be applied as a promising immunotherapy option, as they are reproduced selectively in different types of cancer cells, cause tumor cell lysis and trigger efficient immune responses.

    Plain language summary

    A lot of research has been done to find a cure for lung cancer. Among the methods investigated is the treatment of cancer using a type of virus called an oncolytic virus (OV). Since tumors have unique properties, OVs tend to bind to them and activate immune cells to kill them. This article reviews the combination of OVs with other common cancer treatments which improves their effectiveness, causes fewer reactions and brings better results.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Sun S, Schiller JH, Spinola M, Minna JD. New molecularly targeted therapies for lung cancer. J. Clin. Invest. 117(10), 2740–2750 (2007).
    • 2. Surveillance, Epidemiology, and End Results . Cancer stat facts: lung and bronchus cancer. https://seer.cancer.gov/statfacts/html/lungb.html#content
    • 3. Gasperino J. Gender is a risk factor for lung cancer. Med. Hypotheses 76(3), 328–331 (2011).
    • 4. Lahiri A, Maji A, Potdar PD et al. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol. Cancer 22(1), 40 (2023).
    • 5. Nwagbara UI, Ginindza TG, Hlongwana KW. Lung cancer awareness and palliative care interventions implemented in low-and middle-income countries: a scoping review. BMC Public Health 20(1), 1466 (2020).
    • 6. Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev. Proteomics 18(1), 49–64 (2021).
    • 7. Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Mater Sci. Eng. C Mater. Biol. Appl. 76, 1289–1304 (2017).
    • 8. Yang L, Wang Z. Natural products, alone or in combination with FDA-approved drugs, to treat COVID-19 and lung cancer. Biomedicine 9(6), 689 (2021).
    • 9. Zhang H, Xie R, Ai-Furas H et al. Design, synthesis, and biological evaluation of novel EGFR protacs targeting del19/T790M/C797S mutation. ACS Med. Chem. Lett. 13(2), 278–283 (2022).
    • 10. Wang Z, Yang L, Li Y et al. An activatable, carrier-free, triple-combination nanomedicine for ALK/EGFR-mutant non-small cell lung cancer high-permeable targeted chemotherapy. New J. Chem. 46, 17673–17677 (2022).
    • 11. Jin J, Zhu YL, Sun F et al. Synergistic antitumor effect of the combination of a dual cancer-specific oncolytic adenovirus and cisplatin on lung cancer cells. Oncol. Lett. 16(5), 6275–6282 (2018).
    • 12. Hoyos V, Del Bufalo F, Yagyu S et al. Mesenchymal stromal cells for linked delivery of oncolytic and apoptotic adenoviruses to non-small-cell lung cancers. Mol. Ther. 23(9), 1497–1506 (2015).
    • 13. Bell J, McFadden G. Viruses for tumor therapy. Cell Host Microbe 15(3), 260–265 (2014).
    • 14. Chaurasiya S, Chen NG, Warner SG. Oncolytic virotherapy versus cancer stem cells: a review of approaches and mechanisms. Cancers 10(4), 124 (2018).
    • 15. Liu TC, Thorne SH, Kirn DH. Oncolytic adenoviruses for cancer gene therapy. Methods Mol. Biol. 433, 243–258 (2008).
    • 16. Leber MF, Neault S, Jirovec E et al. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev. 56, 39–48 (2020).
    • 17. Willmon C, Harrington K, Kottke T, Prestwich R, Melcher A, Vile R. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol. Ther. 17(10), 1667–1676 (2009).
    • 18. Polack FP, Lee SH, Permar S et al. Successful DNA immunization against measles: neutralizing antibody against either the hemagglutinin or fusion glycoprotein protects rhesus macaques without evidence of atypical measles. Nat. Med. 6(7), 776–781 (2000).
    • 19. Pidelaserra-Martí G, Engeland CE. Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor Rev. 56, 28–38 (2020).
    • 20. Ekeke CN, Russell KL, Joubert K et al. Fighting fire with fire: oncolytic virotherapy for thoracic malignancies. Ann. Surg. Oncol. 28(5), 2715–2727 (2021). • Investigates oncolytic virotherapy effectively.
    • 21. Jiang Y-Q, Zhang Z, Cai H-R, Zhou H. Killing effect of TNF-mediated by conditionally replicating adenovirus on esophageal cancer and lung cancer cell lines. Int. J. Clin. Exp. Pathol. 8(11), 13785 (2015).
    • 22. Lynch JP 3rd, Kajon AE. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin. Respir. Crit. Care Med. 37(4), 586–602 (2016).
    • 23. Fernández-Ulibarri I, Hammer K, Arndt MAE et al. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. Int. J. Cancer 136(9), 2228–2240 (2015).
    • 24. Lei W, Liu HB, Wang SB et al. Tumor suppressor in lung cancer-1 (TSLC1) mediated by dual-regulated oncolytic adenovirus exerts specific antitumor actions in a mouse model. Acta Pharmacol. Sin. 34(4), 531–540 (2013).
    • 25. Sun DF, Tian H, Liu XX, Zhang B, Zhang Y, Sun QF. Inhibitory effects of ODC and AdoMetDC bi-antisense virus on the growth and invasion of lung cancer cell A-549. Zhonghua Wai Ke Za Zhi 46(1), 61–64 (2008).
    • 26. Sipo I, Hurtado Picó A, Wang X et al. An improved Tet-On regulatable FasL–adenovirus vector system for lung cancer therapy. J. Mol. Med. 84(3), 215–225 (2006).
    • 27. Yoon AR, Kasala D, Li Y et al. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J. Control. Rel. 231, 2–16 (2016).
    • 28. Davis JJ, Wang L, Dong F et al. Oncolysis and suppression of tumor growth by a GFP-expressing oncolytic adenovirus controlled by an hTERT and CMV hybrid promoter. Cancer Gene Ther. 13(7), 720–723 (2006).
    • 29. Gomez-Gutierrez JG, Nitz J, Sharma R et al. Combined therapy of oncolytic adenovirus and temozolomide enhances lung cancer virotherapy in vitro and in vivo. Virology 487, 249–259 (2016).
    • 30. Gomez-Gutierrez JG, Rao XM, Zhou HS, McMasters KM. Enhanced cancer cell killing by truncated E2F-1 used in combination with oncolytic adenovirus. Virology 433(2), 538–547 (2012).
    • 31. Zhang JF, Wei F, Wang HP et al. Potent anti-tumor activity of telomerase-dependent and HSV-TK armed oncolytic adenovirus for non-small cell lung cancer in vitro and in vivo. J. Exp. Clin. Cancer Res. 29(1), 52 (2010).
    • 32. Li S, Qi Z, Li H et al. Conditionally replicating oncolytic adenoviral vector expressing arresten and tumor necrosis factor-related apoptosis-inducing ligand experimentally suppresses lung carcinoma progression. Mol. Med. Rep. 12(2), 2068–2074 (2015).
    • 33. Wang D, Shi L. High-level expression, purification, and in vitro refolding of soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Appl. Biochem. Biotechnol. 157(1), 1–9 (2009).
    • 34. Yang Y, Xu H, Huang W et al. Targeting lung cancer stem-like cells with TRAIL gene armed oncolytic adenovirus. J. Cell. Mol. Med. 19(5), 915–923 (2015).
    • 35. Yan X, Wang L, Zhang R et al. Overcoming resistance to anti-PD immunotherapy in a syngeneic mouse lung cancer model using adenovirus-mediated gene therapy. Oncoimmunology 7(1), e1376156 (2017).
    • 36. Zhang R, Zhang X, Ma B et al. Enhanced antitumor effect of combining TRAIL and MnSOD mediated by CEA-controlled oncolytic adenovirus in lung cancer. Cancer Gene Ther. 23(6), 168–177 (2016).
    • 37. Xie H, Hu J, Pan H, Lou Y, Lv P, Chen Y. Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells. BMB Rep. 47(2), 104–109 (2014).
    • 38. Lei J, Li Q-H, Yang J-L et al. The antitumor effects of oncolytic adenovirus H101 against lung cancer. Int. J. Oncol. 47(2), 555–562 (2015).
    • 39. Wang Y, Ma L, Wang S et al. Assessment of CAR- or CD46-dependent adenoviral vector-mediated TRAIL gene therapy in clinical adenocarcinoma lung cancer cells. Oncology 77(6), 366–377 (2009).
    • 40. Kanno T, Gotoh A, Nakano T, Tagawa M, Nishizaki T. Beneficial oncolytic effect of fiber-substituted conditionally replicating adenovirus on human lung cancer. Anticancer Res. 32(11), 4891–4895 (2012).
    • 41. Kanerva A, Nokisalmi P, Diaconu I et al. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin. Cancer Res. 19(10), 2734–2744 (2013).
    • 42. Lee C-T, Park M-Y, Kang Y, Yoon H-I, Lee J-H. P3-029: genetic immunotherapy using conditionally replicating adenovirus and cytokine adenovirus in lung cancer. J. Thorac. Oncol. 2(8), S619 (2007).
    • 43. Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of nanofluids in drug delivery and biomedical technology: methods and applications. Nanotechnol. Sci. Appl. 13, 47–59 (2020).
    • 44. Garofalo M, Villa A, Rizzi N, Kuryk L, Mazzaferro V, Ciana P. Systemic administration and targeted delivery of immunogenic oncolytic adenovirus encapsulated in extracellular vesicles for cancer therapies. Viruses 10(10), 558 (2018).
    • 45. Kamazani FM, Sotoodehnejad Nematalahi F, Siadat SD, Pornour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci. Rep. 11(1), 24419 (2021). • Nano delivery can be a good idea to transfer viruses to the tumor.
    • 46. Fukazawa T, Maeda Y, Matsuoka J et al. Targeting KRAS mutation-bearing lung cancer in vivo by pulmonary surfactant–adenovirus-mediated gene transfer. Anticancer Res. 30(12), 4925–4936 (2010).
    • 47. Hakkarainen T, Sarkioja M, Lehenkari P et al. Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors. Hum. Gene Ther. 18(7), 627–641 (2007).
    • 48. Kloos A, Woller N, Gurlevik E et al. PolySia-specific retargeting of oncolytic viruses triggers tumor-specific immune responses and facilitates therapy of disseminated lung cancer. Cancer Immunol. Res. 3(7), 751–763 (2015).
    • 49. Li BH, Liu XR, Fan JK et al. A survivin-mediated oncolytic adenovirus induces non-apoptotic cell death in lung cancer cells and shows antitumoral potential in vivo. J. Gene Med. 8(10), 1232–1242 (2006).
    • 50. Zhu ZB, Makhija SK, Lu B et al. Targeting mesothelioma using an infectivity enhanced survivin-conditionally replicative adenoviruses. J. Thorac. Oncol. 1(7), 701–711 (2006).
    • 51. Xiaojiang T, Jinsong Z, Jiansheng W, Chengen P, Guangxiao Y, Quanying W. Adeno-associated virus harboring fusion gene NT4-ant-shepherdin induce cell death in human lung cancer cells. Cancer Invest. 28(5), 465–471 (2010).
    • 52. Wu J-Q, Zhao W-H, Li Y, Zhu B, Yin K-S. Adeno-associated virus mediated gene transfer into lung cancer cells promoting CD40 ligand-based immunotherapy. Virology 368(2), 309–316 (2007).
    • 53. Cai KX, Tse LY, Leung C, Tam PK, Xu R, Sham MH. Suppression of lung tumor growth and metastasis in mice by adeno-associated virus-mediated expression of vasostatin. Clin. Cancer Res. 14(3), 939–949 (2008).
    • 54. Tseng SJ, Kempson IM, Liao Z-X, Ho Y-C, Yang P-C. An acid degradable, lactate oxidizing nanoparticle formulation for non-small cell lung cancer virotherapy. Nano Today 46, 101582 (2022).
    • 55. Zaki K, Agundez L, Sanchez B et al. Adeno-associated virus gene therapy for the treatment of epidermal growth factor receptor positive (EGFR) lung cancer. Hum. Gene Ther. 27(7), A18–A19 (2016).
    • 56. Ajam-Hosseini M, Akhoondi F, Doroudian M. Nano based-oncolytic viruses for cancer therapy. Crit. Rev. Oncol. Hematol. 185, 103980 (2023).
    • 57. Doroudian M, Zanganeh S, Abbasgholinejad E, Donnelly SC. Nanomedicine in lung cancer immunotherapy. Front. Bioeng. Biotechnol. 11(17), 1144653 (2023).
    • 58. Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart nanotherapeutics and lung cancer. Pharmaceutics 13(11), 1972 (2021).
    • 59. Hassan M, Braam SR, Kruyt FAE. Paclitaxel and vincristine potentiate adenoviral oncolysis that is associated with cell cycle and apoptosis modulation, whereas they differentially affect the viral life cycle in non-small-cell lung cancer cells. Cancer Gene Ther. 13(12), 1105–1114 (2006).
    • 60. Garofalo M, Saari H, Somersalo P et al. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J. Control. Rel. 283, 223–234 (2018).
    • 61. Bai RZ, Wu Y, Liu Q et al. Suppression of lung cancer in murine model: treated by combination of recombinant human endostsatin adenovirus with low-dose cisplatin. J. Exp. Clin. Cancer Res. 28(1), 31 (2009).
    • 62. Liu D, Kojima T, Ouchi M et al. Preclinical evaluation of synergistic effect of telomerase-specific oncolytic virotherapy and gemcitabine for human lung cancer. Mol. Cancer Ther. 8(4), 980–987 (2009).
    • 63. Rohr UP, Wulf MA, Stahn S et al. Non-small lung cancer cells are prime targets for p53 gene transfer mediated by a recombinant adeno-associated virus type-2 vector. Cancer Gene Ther. 10(12), 898–906 (2003).
    • 64. Zhong SY, Yu DB, Wang YG, Qiu SB, Wu SJ, Liu XY. An armed oncolytic adenovirus ZD55-IL-24 combined with ADM or DDP demonstrated enhanced antitumor effect in lung cancer. Acta Oncol. 49(1), 91–99 (2010).
    • 65. Song G, Shang C, Sun L et al. Ad-VT enhances the sensitivity of chemotherapy-resistant lung adenocarcinoma cells to gemcitabine and paclitaxel in vitro and in vivo. Invest. New Drugs 40(2), 274–289 (2022). •• Engineered Ad-VT chemotherapy-resistant lung cancer which caused more autophagy.
    • 66. Li T, Fang J, Chu J et al. In vivo and in vitro inhibition of SCLC by combining dual cancer-specific recombinant adenovirus with Etoposide. J. Cancer Res. Clin. Oncol. 148(5), 1073–1085 (2022).
    • 67. Wunder T, Schmid K, Wicklein D et al. Expression of the coxsackie adenovirus receptor in neuroendocrine lung cancers and its implications for oncolytic adenoviral infection. Cancer Gene Ther. 20(1), 25–32 (2013).
    • 68. Sakhawat A, Liu Y, Ma L et al. Upregulation of coxsackie adenovirus receptor sensitizes cisplatin-resistant lung cancer cells to CRAd-induced inhibition. J. Cancer 8(8), 1425–1432 (2017).
    • 69. Tango Y, Taki M, Shirakiya Y et al. Late resistance to adenoviral p53-mediated apoptosis caused by decreased expression of coxsackie-adenovirus receptors in human lung cancer cells. Cancer Sci. 95(5), 459–463 (2004).
    • 70. Kim D, Park M, Lee C et al. Combination of vorinostat and adenovirus-TRAIL exhibits a synergistic antitumor effect by increasing transduction and transcription of TRAIL in lung cancer cells. Cancer Gene Ther. 18(7), 467–477 (2011).
    • 71. Watanabe T, Hioki M, Fujiwara T et al. Histone deacetylase inhibitor FR901228 enhances the antitumor effect of telomerase-specific replication-selective adenoviral agent OBP-301 in human lung cancer cells. Exp. Cell Res. 312(3), 256–265 (2006).
    • 72. Sarkioja M, Kanerva A, Salo J et al. Noninvasive imaging for evaluation of the systemic delivery of capsid-modified adenoviruses in an orthotopic model of advanced lung cancer. Cancer 107(7), 1578–1588 (2006).
    • 73. Liu H, Luo H. Development of group B coxsackievirus as an oncolytic virus: opportunities and challenges. Viruses 13(6),1082 (2021).
    • 74. Deng H, Liu H, de Silva T et al. Coxsackievirus type B3 is a potent oncolytic virus against KRAS-mutant lung adenocarcinoma. Mol. Ther. Oncolytics 14, 266–278 (2019).
    • 75. Liu HT, Xue YC, Deng HY et al. MicroRNA modification of coxsackievirus B3 decreases its toxicity, while retaining oncolytic potency against lung cancer. Mol. Ther. Oncolytics 16, 207–218 (2020).
    • 76. Hoballa MH, Soltani BM, Mowla SJ, Sheikhpour M, Kay M. Identification of a novel intergenic miRNA located between the human DDC and COBL genes with a potential function in cell cycle arrest. Mol. Cell. Biochem. 444(1–2), 179–186 (2018).
    • 77. Alvanegh AG, Ganji SM, Kamel A et al. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in lung cancer. Biomed. Pharmacother. 140, 111755 (2021).
    • 78. Liu H, Bahreyni A, Mohamud Y, Xue YC, Jia WWG, Luo H. Enhanced genomic stability of new miRNA-regulated oncolytic coxsackievirus B3. Mol. Ther. Oncolytics 27, 89–99 (2022).
    • 79. Sagara M, Takishima Y, Miyamoto S, Shimizu H, Nakanishi Y, Tani K. Novel recombinant coxsackievirus B3 infection elicits robust oncolytic activity against human non-small lung cancer and triple-negative breast cancer. J. Mol. Ther. 24, S162 (2016).
    • 80. Cai L, Liu Z. Novel recombinant coxsackievirus B3 with genetically inserted basic peptide elicits robust antitumor activity against lung cancer. Cancer Med. 9(14), 5210–5220 (2020).
    • 81. Sagara M, Inoue H, Kuroda M et al. Coxsackievirus A11 induces robust oncolytic activity against human non-small cell lung cancer cells with immunostimulatory properties. Mol. Ther. 23, S171–S172 (2015).
    • 82. Sakamoto A, Inoue H, Miyamoto S, Ito S, Soda Y, Tani K. Coxsackievirus A11 is an immunostimulatory oncolytic virus that induces complete tumor regression in a human non-small cell lung cancer. Sci. Rep. 13(1), 5924 (2023).
    • 83. Rudin CM, Pandha HS, Zibelman M et al. Phase 1, open-label, dose-escalation study on the safety, pharmacokinetics, and preliminary efficacy of intravenous coxsackievirus A21 (V937), with or without pembrolizumab, in patients with advanced solid tumors. J. Immunother. Cancer 11(1), e005007 (2023).
    • 84. Crimi S, Fiorillo L, Bianchi A et al. Herpes virus, oral clinical signs and QoL: systematic review of recent data. Viruses 11(5), 463 (2019).
    • 85. Kellish P, Shabashvili D, Rahman MM et al. Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival. J. Clin. Invest. 129(6), 2279–2292 (2019).
    • 86. Park KH, Kim G, Jang SH et al. Gene therapy with GM-CSF, interleukin-4 and herpes simplex virus thymidine kinase shows strong antitumor effect on lung cancer. Anticancer Res. 23(2B), 1559–1564 (2003).
    • 87. Nagamachi Y, Tani M, Shimizu K, Yoshida T, Yokota J. Suicidal gene therapy for pleural metastasis of lung cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene. Cancer Gene Ther. 6(6), 546–553 (1999).
    • 88. Chiu CC, Kang YL, Yang TH, Huang CH, Fang K. Ectopic expression of herpes simplex virus-thymidine kinase gene in human non-small cell lung cancer cells conferred caspase-activated apoptosis sensitized by ganciclovir. Int. J. Cancer 102(4), 328–333 (2002).
    • 89. Fukunaga M, Takamori S, Hayashi A, Shirouzu K, Kosai K. Adenoviral herpes simplex virus thymidine kinase gene therapy in an orthotopic lung cancer model. Ann. Thorac. Surg. 73(6), 1740–1746 (2002).
    • 90. Zhou JF, Chen G, Lu YP, Wang SX, Ma D. Recombinant adenovirus vector-mediated herpes simplex virus thymidine kinase gene transfer followed by ganiciclovir administration effectively inhibits growth of human small-cell lung cancer in a murine xenotransplant model. Zhonghua Zhong Liu Za Zhi. 26(2), 68–70 (2004).
    • 91. Van Dillen IJ, Mulder NH, Sluiter WJ et al. Consequences of chemoresistance for the herpes simplex virus thymidine kinase/ganciclovir-induced bystander effect in a human small cell lung cancer cell line model. Anticancer Res. 25(1A), 255–261 (2005).
    • 92. Oh JY, Park MY, Kim DR et al. Combination gene therapy of lung cancer with conditionally replicating adenovirus and adenovirus-herpes simplex virus thymidine kinase. Int. J. Mol. Med. 25(3), 369–376 (2010).
    • 93. Kim G, Park KH, Seol JY et al. Combination gene therapy of herpes simplex virus thymidine kinase and cytokines in lung cancer. Tuberc. Respir. Dis. 51(2), 135–146 (2016).
    • 94. Osaki T, Tanio Y, Tachibana I et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res. 54(20), 5258–5261 (1994).
    • 95. Chiu CC, Li CH, Fuh TS et al. The suppressed proliferation and premature senescence by ganciclovir in p53-mutated human non-small-lung cancer cells acquiring herpes simplex virus-thymidine kinase cDNA. Cancer Detect. Prev. 29(3), 286–293 (2005).
    • 96. Ji JS, Weng QY, Zhang F et al. Non-small-cell lung cancer: feasibility of intratumoral radiofrequency hyperthermia-enhanced herpes simplex virus thymidine kinase gene therapy. Radiology 288(2), 612–620 (2018).
    • 97. Yang CT, Lin YC, Lin CL et al. Oncolytic herpesvirus with secretable angiostatic proteins in the treatment of human lung cancer cells. Anticancer Res. 25(3B), 2049–2054 (2005).
    • 98. Kanai R, Eguchi K, Takahashi M et al. Enhanced therapeutic efficacy of oncolytic herpes vector G207 against human non-small cell lung cancer – expression of an RNA-binding protein, Musashi1, as a marker for the tailored gene therapy. J. Gene Med. 8(11), 1329–1340 (2006).
    • 99. Goodwin JM, Schmitt AD, McGinn CM et al. Angiogenesis inhibition using an oncolytic herpes simplex virus expressing endostatin in a murine lung cancer model. Cancer Invest. 30(3), 243–250 (2012).
    • 100. Lanuti M, Goodwin JM, Tanabe KK. Combined oncolysis and anti-angiogenesis gene therapy using a herpes simplex virus expressing endostatin in a murine lung cancer model. Mol. Ther. 13, S252–S253 (2006).
    • 101. Adusumilli PS, Stiles BM, Chan MK et al. Radiation therapy potentiates effective oncolytic viral therapy in the treatment of lung cancer. Ann. Thorac. Surg. 80(2), 409–416 (2005).
    • 102. Zhu B, Yang JR, Jiang YQ, Chen SF, Fu XP. Gene therapy of lung adenocarcinoma using herpes virus expressing a fusogenic embrane glycoprotein. Cell Biochem. Biophys. 69(3), 583–587 (2014).
    • 103. Toyoizumi T, Mick R, Abbas AE, Kang EH, Kaiser LR, Molnar-Kimber KL. Combined therapy with chemotherapeutic agents and herpes simplex virus type 1 ICP34.5 mutant (HSV-1716) in human non-small cell lung cancer. Hum. Gene Ther. 10(18), 3013–3029 (1999).
    • 104. Sakata Y, Ino Y, Todo T, Ikeda N. Combination therapy of oncolytic herpes simplex virus type 1 with erlotinib in a human lung cancer xenograft model. J. Thorac. Oncol. 12(1), S1279 (2017).
    • 105. Li JM, Kao KC, Li LF et al. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol. J. 10, 241 (2013).
    • 106. Abolfathi H, Sheikhpour M, Mohammad Soltani B, Fahimi H. The comparison and evaluation of the miR-16, miR-155 and miR-146a expression pattern in the blood of TB and NSCLC patients: a research paper. Gene Rep. 22, 100967 (2021).
    • 107. Wang X, Liu S, Zhou Z, Yan H, Xiao J. A herpes simplex virus type 2-encoded microRNA promotes tumor cell metastasis by targeting suppressor of cytokine signaling 2 in lung cancer. Tumour Biol. 39(5), 1010428317701633 (2017).
    • 108. Kaur B, Chiocca EA. Personalizing oncolytic virotherapy? Mol. Ther. 15(1), 6–7 (2007).
    • 109. Bhattacharjee S, Yadava PK. Measles virus: background and oncolytic virotherapy. Biochem. Biophys. Rep. 13, 58–62 (2018).
    • 110. Fujiyuki T, Yoneda M, Amagai Y et al. A measles virus selectively blind to signaling lymphocytic activation molecule shows anti-tumor activity against lung cancer cells. Oncotarget 6(28), 24895–24903 (2015).
    • 111. Patel MR, Jacobson BA, Belgum H et al. Measles vaccine strains for virotherapy of non-small-cell lung carcinoma. J. Thorac. Oncol. 9(8), 1101–1110 (2014).
    • 112. Inoue H, Yasunari K, Sakamoto A et al. Genetically engineered measles virus Edmonston strain expressing the wild-type N, P, L genes (MV-NPL) is a promising oncolytic virotherapy agent against lung cancer stem cells. Mol. Ther. 20, S95 (2012).
    • 113. Peikert T. Personalized oncolytic therapy: the next step toward the successful clinical application of vaccine-strain measles viruses for cancer therapy? J. Thorac. Oncol. 15(5), 689–691 (2020). •• Personalized medicine is one of the newest and most effective treatment approaches.
    • 114. Obaid RF, Al-Khafaji YA, Obied HN, Al-Jibouri SA, Mohammed SJ, Al-Kilabi RF. Correlation between live attenuated measles viral load and growth inhibition percentage in non-small cell lung cancer cell line. J. Contemp. Med. Sci. 4(1), 45–50 ( 2018).
    • 115. Zhao DH, Chen P, Yang HQ et al. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer. Oncol. Rep. 29(1), 199–204 (2013).
    • 116. Xia M, Gonzalez P, Li CY et al. Oncolytic attenuated measles virus exploits autophagy for its replication and spreads by suppressing Rig-1 like receptors (RLRs) in non-small cell lung cancer cells. Cancer Res. 72, 2259 (2012).
    • 117. Xia M, Meng G, Jiang A et al. Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus. Oncotarget 5(11), 3907–3918 (2014).
    • 118. Chai Z, Zhang PY, Fu F et al. Oncolytic therapy of a recombinant Newcastle disease virus D90 strain for lung cancer. Virol. J. 11, 84 (2014).
    • 119. Yan Y, Liang B, Zhang J, Liu Y, Bu X. Apoptotic induction of lung adenocarcinoma A549 cells infected by recombinant RVG Newcastle disease virus (rL-RVG) in vitro. Mol. Med. Rep. 11(1), 317–326 (2015).
    • 120. Li Q, Wei D, Feng F et al. α2,6-linked sialic acid serves as a high-affinity receptor for cancer oncolytic virotherapy with Newcastle disease virus. J. Cancer Res. Clin. Oncol. 143(11), 2171–2181 (2017).
    • 121. Bian J, Wang K, Kong X et al. Caspase- and p38-MAPK-dependent induction of apoptosis in A549 lung cancer cells by Newcastle disease virus. Arch. Virol. 156(8), 1335–1344 (2011).
    • 122. Fu F, Zhao M, Yang YJ et al. Antiproliferative effect of Newcastle disease virus strain D90 on human lung cancer cell line A549. Oncol. Res. 19(7), 323–333 (2011).
    • 123. Ye T, Jiang K, Wei L et al. Oncolytic Newcastle disease virus induces autophagy-dependent immunogenic cell death in lung cancer cells. Am. J. Cancer Res. 8(8), 1514–1527 (2018).
    • 124. Hua Y, Tao X, Guo X, Wang H, Liang W. Effect and safety of the Newcastle disease virus combined with chemotherapy for patients with advanced non-small cell lung cancer. Chin. J. Clin. Oncol. 39(13), 919–922 (2012).
    • 125. Yurchenko KS, Zhou P, Kovner AV, Zavjalov EL, Shestopalova LV, Shestopalov AM. Oncolytic effect of wild-type Newcastle disease virus isolates in cancer cell lines in vitro and in vivo on xenograft model. PLOS ONE 13(4), e0195425 (2018).
    • 126. Jiang K, Li YC, Zhu QM et al. Pharmacological modulation of autophagy enhances Newcastle disease virus-mediated oncolysis in drug-resistant lung cancer cells. BMC Cancer 14, 551 (2014).
    • 127. Hu LL, Sun SL, Wang TP et al. Oncolytic Newcastle disease virus triggers cell death of lung cancer spheroids and is enhanced by pharmacological inhibition of autophagy. Am. J. Cancer Res. 5(12), 3612–3623 (2015).
    • 128. Yaacov B, Elihaoo E, Lazar I et al. Selective oncolytic effect of an attenuated Newcastle disease virus (NDV-HUJ) in lung tumors. Cancer Gene Ther. 15(12), 795–807 (2008).
    • 129. Song DZ, Fan XH, Huang C et al. Inhibitory effect of Newcastle disease virus on the growth of human small cell lung cancer xenografts. Tumor 29(6), 544–549 (2009).
    • 130. Liang Y, Tian WY, Huang JJ, Gao LX, Fan XH. MicroRNA-204 plays a role as a tumor suppressor in Newcastle disease virus-induced oncolysis in lung cancer A549 cells. Oncol. Lett. 21(6), 482 (2021).
    • 131. Chan WM, McFadden G. Oncolytic poxviruses. Annu. Rev. Virol. 1(1), 191–141 (2014).
    • 132. Chaurasiya S, Chen NG, Lu J et al. A chimeric poxvirus with J2R (thymidine kinase) deletion shows safety and anti-tumor activity in lung cancer models. Cancer Gene Ther. 27(3–4), 125–135 (2020).
    • 133. Hu JQ, Wang HY, Gu JF, Liu XY, Zhou XM. Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis. Acta Biochim. Biophys. Sin. 50(10), 1018–1027 (2018).
    • 134. Rintoul JL, Lemay CG, Tai LH et al. ORFV: a novel oncolytic and immune stimulating parapoxvirus therapeutic. Mol. Ther. 20(6), 1148–1157 (2012).
    • 135. Christie JD, Appel N, Canter H et al. Systemic delivery of TNF-armed myxoma virus plus immune checkpoint inhibitor eliminates lung metastatic mouse osteosarcoma. Mol. Ther. Oncolytics 22, 539–554 (2021).
    • 136. Hofmann E, Weibel S, Szalay AA. Combination treatment with oncolytic vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice. J. Transl. Med. 12(1), 197 (2014).
    • 137. Weibel S, Hofmann E, Basse-Luesebrink TC et al. Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer. J. Transl. Med. 11, 106 (2013).
    • 138. Chintala NK, Choe JK, McGee E et al. Correlative analysis from a phase I clinical trial of intrapleural administration of oncolytic vaccinia virus (Olvi-vec) in patients with malignant pleural mesothelioma. Front. Immunol. 14, 1112960 (2023).
    • 139. Yu F, Wang X, Guo ZS, Bartlett DL, Gottschalk SM, Song XT. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol. Ther. 22(1), 102–111 (2014).
    • 140. Ekeke CN, Russell KL, Murthy P et al. Intrapleural interleukin-2-expressing oncolytic virotherapy enhances acute antitumor effects and T-cell receptor diversity in malignant pleural disease. J. Thorac. Cardiovasc. Surg. 163(4), e313–e328 (2022).
    • 141. Lv CW, Su QS, Liang YP, Hu JL, Yuan SJ. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis. Biochem. Biophys. Res. Commun. 476(1), 21–28 (2016).
    • 142. Remy-Ziller C, Thioudellet C, Hortelano J et al. Sequential administration of MVA-based vaccines and PD-1/PD-L1-blocking antibodies confers measurable benefits on tumor growth and survival: preclinical studies with MVA-βGal and MVA-MUC1 (TG4010) in a murine tumor model. Hum. Vaccin. Immunother. 14(1), 140–145 (2018).
    • 143. Sun F, Guo ZS, Gregory AD, Shapiro SD, Xiao GT, Qu ZX. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J. Immunother. Cancer 8(1), e000294 (2020).
    • 144. Tenesaca S, Vasquez M, Alvarez M et al. Statins act as transient type I interferon inhibitors to enable the antitumor activity of modified vaccinia Ankara viral vectors. J. Immunother. Cancer 9(7), e001587 (2021).
    • 145. Shi Z, Liu B, Huang C et al. An oncolytic vaccinia virus armed with anti-human-PD-1 antibody and anti-human-4-1BB antibody double genes for cancer-targeted therapy. Biochem. Biophys. Res. Commun. 559, 176–182 (2021).
    • 146. Liu GH, Wang WL, Wang C et al. Livin modulates the apoptotic effects of vesicular stomatotitis virus in lung adenocarcinoma. Int. J. Oncol. 47(5), 1775–1782 (2015).
    • 147. Malilas W, Koh SS, Lee S et al. Suppression of autophagic genes sensitizes CUG2-overexpressing A549 human lung cancer cells to oncolytic vesicular stomatitis virus-induced apoptosis. Int. J. Oncol. 44(4), 1177–1184 (2014).
    • 148. Patel KMR, Dash A, Jacobson BA et al. JAK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther. 26(11–12), 411–418 (2019).
    • 149. Patel MR, Jacobson BA, Ji Y et al. Vesicular stomatitis virus expressing interferon-beta is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget 6(32), 33165–33177 (2015).
    • 150. Schreiber L, Urbiola C, Spiesschaert B et al. Oncolysis dominated therapeutic effect of LCMV-GP–pseudotyped vesicular stomatitis virus in a syngeneic lung cancer model. Eur. J. Cancer 110, S15–S16 (2019).
    • 151. Patel MR, Jacobson BA, Ji Y, Hebbel RP, Kratzke RA. Blood outgrowth endothelial cells as a cellular carrier for oncolytic vesicular stomatitis virus expressing interferon-β in preclinical models of non-small cell lung cancer. Transl. Oncol. 13(7), 100782 (2020).
    • 152. Sei S, Mussio JK, Yang QE et al. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells. Mol. Cancer 8, 47 (2009).
    • 153. Villalona-Calero MA, Lam E, Otterson GA et al. Oncolytic reovirus in combination with chemotherapy in metastatic or recurrent non-small cell lung cancer patients with KRAS-activated tumors. Cancer 122(6), 875–883 (2016).
    • 154. Maatta AM, Makinen K, Ketola A et al. Replication competent Semliki Forest virus prolongs survival in experimental lung cancer. Int. J. Cancer 123(7), 1704–1711 (2008).
    • 155. Määttä A-M, Wahlfors T, Häkkinen K et al. Evaluation of lung cancer virotherapy with oncolytic semliki forest virus using immunodeficient rodent tumor model. Mol. Ther. 13, S17 (2006).
    • 156. Masemann D, Köther K, Kuhlencord M et al. Oncolytic influenza virus infection restores immunocompetence of lung tumor-associated alveolar macrophages. Oncoimmunology 7(5), e1423171 (2018).
    • 157. Masemann D, Meissner R, Schied T et al. Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune-checkpoint inhibitors against IC-resistant lung cancers. Oncoimmunology 10(1), 1885778 (2021).
    • 158. Strauss J, Madan R, Bilusic M et al. Oncolytic parainfluenza virus 5 vector enhances natural killer cell killing of lung tumor cells in 2D and 3D spheroid cultures. J. Immunother. 8(3), A1–A559 (2020).
    • 159. Varudkar N, Oyer JL, Copik A, Parks GD. Oncolytic parainfluenza virus combines with NK cells to mediate killing of infected and non-infected lung cancer cells within 3D spheroids: role of type i and type III interferon signaling. J. Immunother. Cancer 9(6), e002373 (2021).
    • 160. Poirier JT, Dobromilskaya I, Moriarty WF, Peacock CD, Hann CL, Rudin CM. Selective tropism of Seneca Valley virus for variant subtype small cell lung cancer. J. Natl Cancer Inst. 105(14), 1059–1065 (2013).
    • 161. Liu F, Wang Q, Huang Y, Wang N, Shan H. Rescue of NanoLuc luciferase-expressing senecavirus A with oncolytic activity. Virus Res. 292, 198232 (2021).
    • 162. Vacchelli E, Eggermont A, Fridman CS et al. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 2(6), e24612 (2013).
    • 163. Cody JJ, Douglas JT. Armed replicating adenoviruses for cancer virotherapy. Cancer Gene Ther. 16(6), 473–488 (2009).
    • 164. Li Z, Feiyue Z, Gaofeng L, Haifeng L. Lung cancer and oncolytic virotherapy – enemy’s enemy. Transl. Oncol. 27, 101563 (2023).
    • 165. Rosewell Shaw A, Suzuki M. Recent advances in oncolytic adenovirus therapies for cancer. Curr. Opin. Virol. 21, 9–15 (2016).
    • 166. Toth K, Wold WSM. Increasing the efficacy of oncolytic adenovirus vectors. Viruses 2(9), 1844–1866 (2010).
    • 167. Niemann J, Kühnel F. Oncolytic viruses: adenoviruses. Virus Genes 53(5), 700–706 (2017).